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Abstract of Dissertation

In the first part of this thesis, we consider a special version of Le Potier’s strange duality

conjecture for sheaves over abelian surfaces, after other two versions were studied in previous

literature. In the current setup, the isomorphism involves moduli spaces of sheaves with fixed

determinant and fixed determinant of the Fourier-Mukai transform on one side, and moduli

spaces where both determinants vary, on the other side. We first establish the isomorphism in

rank one using the representation theory of Heisenberg groups. For product abelian surfaces,

the isomorphism is then shown to hold for sheaves with fiber degree 1 via Fourier-Mukai

techniques. By degeneration to product geometries, the duality is obtained generically for a

large number of numerical types. Finally, it is shown in great generality that the Verlinde

sheaves encoding the variation of the spaces of theta functions are locally free over moduli.

In the second part, we discuss general methods for studying the cone of ample divisors on

the Hilbert scheme of n points X [n], where X is a smooth projective surface of irregularity

0. We then use these techniques to compute the cone of ample divisors on X [n] for several

surfaces where the cone was previously unknown. Our examples include families of surfaces

of general type and del Pezzo surfaces of degree 1. The methods rely on Bridgeland stability

and the Positivity Lemma of Bayer and Macr̀ı.
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Introduction

This thesis is articulated in two parts, both of which are related to the study of divisors

on moduli spaces of sheaves over surfaces. The first parts deals with the study of certain

divisors, known as Theta divisors, which arise naturally via a determinantal construction.

Their most prominent feature is that, in some cases of interest, they exhaust all the possible

isomorphism classes of divisors on the moduli space, thus covering its entire Picard group.

The relationship between the spaces of sections of the Theta divisors will be our focus for

the first part of this thesis: it was observed, first in the case of curves and then in the case

of surfaces by Le Potier, that the spaces of section of some of these divisors are subject

to certain natural dualities. It was then conjectured that such duality phenomenon should

hold in a vast generality: the case of our interest will be that of moduli spaces over abelian

surfaces, and our main result will show how in this case one can show that such conjecture

holds for a generic abelian surface.

The second part of this thesis explores the possibility to describe the Nef cones of Hilbert

schemes of points on surfaces using a powerful tool which was constructed by Bridgeland

in 2006: a notion of stability for complexes of sheaves which generalizes the classical slope

stability for sheaves on algebraic curves, but proves different in most other cases. The study

of Bridgeland stability conditions has been shown to have applications in many fields of

mathematics, and the phenomenon we are interested in is studying is a deep relationship

between Bridgeland stability conditions on algebraic surfaces an Nef divisors, which was first

established by Bayer and Macŕı in 2014. We will exploit such relationship and apply it in a
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new case of interest, and by doing so we will be able to give a complete description of the

Nef cone of the Hilbert schemes of points on a large class of surfaces.

We will now give a more detailed introduction to each of the two topics to organize the

structure of this thesis.

0.1 Strange Duality and Verlinde numbers

Let (X,H) be a complex projective polarized curve or surface, v ∈ K(X) be a class in the

topological K-theory K(X), and let us denote by Mv the moduli space of Gieseker H-stable

sheaves on X with Mukai vector v. Consider a Mukai vector w, orthogonal to v with respect

to the Euler form (v, w) := χ(v ⊗ w) on K(X). There is a group homomorphism

Θ : v⊥ −→ Pic(Mv) , w 7→ Θw (1)

considered in [Dre87, LP92, Li96]. The Theta line bundle Θw → Mv is obtained by a

standard determinantal construction, see [LP92, Li96]. In some cases of importance, the

group homomorphism (1) is an isomorphism, hence the Picard group of the moduli space

can be completely described in terms of Theta divisors. Of course, since the orthogonality

condition on v and w is symmetric, we can construct a theta line bundle Θv on Mw in the

same fashion. In fact, if one takes any two classes v and w satisfying (v, w) = 0, under easily

achievable assumptions, the jumping locus

Θ = {(E,F ) ∈Mv ×Mw | H0(E ⊗ F ) 6= 0}

should be divisorial, hence its sheaf of ideals O(Θ) should be a line bundle on the product

Mv ×Mw. If one assumes further that the splitting O(Θ) = Θw �Θv holds (which is true,

e.g., if one of the moduli spaces is simply connected), then Θ induces a linear map

SD : H0(Mv,Θw)∨ −→ H0(Mw,Θv) (2)
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called Strange Duality map. One can then ask the following natural questions: in all cases

when one has that the equality in terms of dimension

h0(Mv,Θw) = h0(Mw,Θv)

is the map SD an isomorphism?

Strange Duality was first proved for curves, in [Bel08, MO07]. The corresponding version

for surfaces saw some partial results when X = P2 by Danila [Dan04], and a generic version

for K3 surfaces by Marian and Oprea in [MO13]. The abelian case is a rich story itself, and

it will be the main focus of Part I.

0.1.1 The abelian case

In the case when X is an abelian surface, we denote by Mv the moduli space of Gieseker

semistable sheaves of type v, by the pair M+
v (respectively M−

v ) is the moduli space of

semistable sheaves on X of type v with fixed determinant (respectively, whose image via

the Fourier-Mukai transforms with kernel the Poincaré bundle P have fixed determinant);

and by Kv the generalized Kummer variety, i.e. the moduli space of semistable sheaves of

type v whose determinant and whose determinant of the Fourier-Mukai transform are both

fixed. It was shown [MO14b] that the Verlinde numbers are the same on three different

pairs of moduli spaces: (M+
v ,M+

w), (M−
v ,M−

w), and (Kv,Mw). The first two cases were

examined in [MO14a]. The third case is especially interesting because it arises from the

unique geometry of abelian surfaces, and because of the apparent asymmetry in the choice

of the two moduli spaces. In our joint paper [BMOY14] we prove that strange duality holds

in the third case for a generic abelian surfaces. More precisely, one of the main results of

our paper is the following:

Theorem 3 ([BMOY14], Theorem 2). Assume (X,H) is a generic primitively polarized

abelian surface, and v, w are two orthogonal Mukai vectors of ranks r, r′ ≥ 2 with

3



1. c1(v) = c1(w) = H;

2. χ(v) < 0, χ(w) < 0.

Then, the locus

Θ = {(E,F ) with H0(E ⊗L F ) = 0} ⊂ Kv ×Mw

is a divisor, and induces an isomorphism

SD : H0(Kv, θw)∨ −→ H0(Mw, θv).

Our strategy to prove Theorem 3.5, and the subsequent organization of Part I, will be the

following:

• In Chapter 3, we prove the statement in the rank one case. More precisely, we prove

the following:

Theorem 1. Let L → X be an ample line bundle on an arbitrary abelian surface.

Write χ(X,L) = χ = a+ b for positive integers a and b. The divisor

ΘL = {(IZ , IW , y) with H0(IZ ⊗ IW ⊗ y ⊗ L) 6= 0} ⊂ K [a] ×X [b] × X̂

induces an isomorphism

DL : H0(K [a], Θv)
∨ −→ H0(X [b] × X̂, Θw).

In other words, if we fix an ample line bundle L ∈ Pic(X) with χ(L) = a+b for positive

integers a and b, we can set v = (1, 0,−a) and w = (1, c1(L), a). Then we have the

following isomorphisms:

Kv
∼= K [a], Mw

∼= X [b] × X̂

where X [b] is the Hilbert scheme of b points on X, K [a] denotes the generalized Kummer

variety of a points adding to zero on X and X̂ is dual abelian surface of X. In this

basic case, the Θ-divisor described above becomes the locus
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ΘL = {(Iz, Iw, y) | H0(IZ ⊗ Iw ⊗ y ⊗ L) 6= 0} ⊂ K [a] ×X [b] × X̂,

and the associated line bundle takes a very explicit form. In order to prove the strange

duality conjecture in this setting, we construct another line bundle M̂a, where M is

some twist of L and M̂ denotes its Fourier-Mukai transform with kernel the Poincaré

bundle and then we use the representation theory of the Heisenberg group G(M̂a),

introduced by Mumford in his study of Abelian varieties (see [Mum66]) to prove the

injectivity of the strange duality map. The surjectivity will then follow from a previous

dimensional computation done in [MO14a].

• In Chapter 4, we use Fourier-Mukai techniques to prove the strange duality conjecture

for any product abelian surface. More precisely, we prove the following:

Theorem 2. Let X = B × F be a product abelian surface. Assume v and w are two

orthogonal Mukai vectors of ranks r, r′ ≥ 2 with

c1(v) · f = c1(w) · f = 1.

Then, the locus

Θ = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ Kv ×Mw

is a divisor, and induces an isomorphism

D : H0(Kv,Θw)∨ → H0(Mw,Θv).

Recall that, given any two smooth projective varieties X and Y and a complex E in

the bounded derived category Db(X × Y ) the Fourier-Mukai transform from X to Y

with kernel E is the functor

ΦE : Db(X)→ Db(Y ), F 7→ Rp!(E ⊗L q∗F ),
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where q and p are the projections to X and Y respectively. Historically, the first

Fourier-Mukai transform was introduced by Mukai in the setting of abelian varieties:

specifically, the source variety X is an abelian variety and the target variety Y = X̂ is

its dual. Moreover, the kernel considered by Mukai is the normalized Poincaré bundle,

i.e. the unique line bundle P on X × X̂ such that

P|{x}×X̂ ∼= OX̂ , P|X×{y} ∼= y.

This specific Fourier-Mukai transform is fundamental in the theory of abelian varieties,

and will be widely used in this exposition. It is an open conjecture whether the

existence of a Fourier-Mukai transform which is an equivalence of categories gives rise

to a birational isomorphisms between the two varieties. In our case, given a product

abelian surface X = B × F with a suitable polarization, where B and F are elliptic

curves, we use a fiberwise Fourier-Mukai transform which in fact gives rise to birational

isomorphisms

Kv 99K K
[dv ], Mw 99K X

[dw] × X̂.

Here v and w are Mukai vectors with fiber degree one, and

dv =
1

2
dimMv − 1.

These birational isomorphisms turn out to be regular in codimension one, allowing

us to use the result we obtained in the rank one case and prove the strange duality

isomorphism in this new setting.

• In Chapter 5, we use a degeneration argument to prove the strange duality conjecture

for generic abelian surfaces and we prove Theorem 3. We work in families on the
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moduli stack of polarized abelian surfaces, where the polarization has fixed degree.

The relative version of the spaces of generalized theta functions we are interested in

(2) are the so-called Verlinde sheaves, whose properties were previously investigated by

Marian and Oprea, see [MO14b]. Crucial to our argument is the fact that the Verlinde

sheaves are generically vector bundles of equal rank, whose fibers are the the spaces

of generalized theta functions. We use and prove the claim that the moduli spaces of

sheaves we obtain by varying the Gieseker stability condition agree in codimension one

each time a wall is crossed, allowing us to exchange the suitable polarization with the

one imposed by the first Chern class of our Mukai vector when we move on the moduli

stack of polarized abelian varieties. Our result then follows.

• In Chapter 6, we finally prove the global local freeness of the Verlinde sheaves. More

precisely, we prove the following:

Theorem 3. Let (X,H) be a polarized abelian surface. Assume that

v = (r, dH, χ), w = (r′, d′H,χ′)

are orthogonal primitive Mukai vectors of ranks r, r′ ≥ 2 such that

(i) d, d′ > 0;

(ii) χ < 0, χ′ < 0.

Assume furthermore that if (d, χ) = (1,−1), then (X,H) is not a product of two elliptic

curves. We have

h0(Kv,Θw) = χ(Kv,Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
.

Moreover, for any representative F ∈ Kw,

h0(Mv,ΘF ) = χ(Mv,ΘF ) =
d2
w

dv + dw

(
dv + dw
dv

)
.

7



This is done by using results on the birational geometry of Bridgeland moduli spaces

previously obtained by Bayer-Macŕı and Minamide-Yanagida-Yoshioka, respectively in

[BM14a], [MYY11]. This will be useful for future studies on strange duality.

0.1.2 Historical background on the SD morphism and the Verlinde

numbers

It is significant to point out that the Euler characteristics of the Theta divisors, i.e. the

numbers χ(Mv,Θw), are of great importance in mathematical physics and are often referred

to as Verlinde numbers. Historically, Verlinde numbers arise while doing geometric quantiza-

tion in mathematical physics. Indeed, given a Riemann surface Σ of genus g, one can look at

the moduli space A0 of flat differentiable connections on the trivial bundle Σ× SU(r) −→ Σ

modulo its group of gauge transformations G ∼= C∞(Σ, SU(r)). A classical theorem by

Narasimhan and Seshadri [NS65] claims that such moduli space can be interpreted as a

moduli space of semistable bundles on Σ. More precisely, one has the following identifica-

tion:

A0/G ∼= SU r(Σ) := moduli space of semistable holomorphic rank r

vector bundles on Σ with trivial determinant.

Such moduli space also has a natural symplectic structure induced by the Killing form on the

Lie algebra su(r). The problem of (pre-)quantizing1 the moduli space A0/G as a symplectic

manifold is then equivalent to quantizing the well known moduli space SU r(Σ). It turns out

that any power of the Theta line bundle is a pre-quantization bundle on the moduli space

1i.e. associating to it a triple (L,∇, F ) of a holomorphic line bundle with a connection whose curvature is
a multiple of the symplectic form and a complex distribution on the tangent bundle of the manifold fulfilling
some compatibility conditions
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SU r(Σ). Thus the space of sections of the divisor

Θ :=
{

[E] ∈ SU r(Σ) : dimCH
0(Σ, E) > 0

}
(3)

which is called space of level k non-abelian Theta functions is the quantum Hilbert space of

the moduli space A0/G . The dimension of this vector space is therefore of great interest,

and it was computed in the following:

Theorem 0.1.1 ([Ver88] (Verlinde formula)). Let

z
SU(r)
k (g) := dimCH

0(SU r(Σ)J ,Θ
k), where g = g(Σ).

Then

z
SU(r)
k (g) =

(
r

k + r

)g ∑
S⊂{1,...,k+r}
|S|=r

∏
s∈S,t6∈S

1≤r≤k+r

∣∣∣∣2 sinπ
s− t
r + k

∣∣∣∣g−1

. (4)

Among other reasons, the Verlinde formula is remarkable because:

• the expression on the right actually defines a natural number,

• it is polynomial in k, and

• the dimension does not depend on a specific complex structure we fix on Σ.

One has interest in computing the Verlinde numbers on moduli spaces of sheaves over sur-

faces. The first instance of it came in [EGL01], where the three authors computed the

Verlinde formula on Hilbert schemes of points over arbitrary surfaces for some Theta divi-

sors. Let us recall that if X is a (say simply connected) surface, the Hilbert scheme X [n] of n

points on X can be identified with the moduli space of semistable sheaves of class (1, 0,−n)

on X. Hence any line bundle on X with class (1, c1(L), n) induces a Theta line bundle,

usually denoted by L[n] on the Hilbert scheme. It can be furthermore shown that if L has

no higher cohomology, neither does L[n] (cf. e.g. [Sca07]). Ellingsrud, Göttsche and Lehn

showed that:

9



h0(X [n], L[n]) =

(
h0(L)

n

)
=

(
χ(L)

n

)
.

Afterwards, Göttsche, Nakajima and Yoshioka [GNY08] computed the Verlinde numbers on

K3 surfaces using a deformation-theoretic argument and the hyperkähler geometry of the

situation. Later, Marian and Oprea derived the formula for abelian surfaces in [MO14a].

The question whether the Strange Duality morphism is always an isomorphism in the surface

case brings a high impact contribution to the study of linear series of divisors on moduli

spaces of sheaves. It asks whether there is a duality between certain spaces of sections of

Theta divisors, which will imply a duality between the corresponding linear series on the

moduli spaces. The (conjectured) isomorphism goes under the name of Strange Duality

morphism. In the curve case the topological type of a vector bundle can be easily seen to

depend only on its rank and its determinant. We consider the two moduli spaces U(r, d) and

U(r,Λ), parametrizing vector bundles of rank r and, respectively, degree d and determinant

Λ. The well understood structure of the Picard group of both moduli spaces [Dre87] reveals

that the line bundle associated to the jumping locus

Θr,F = {E ∈ U(r, d) : H0(E ⊗ F ) 6= 0}

depends only on the rank and the determinant of F on U(r, d), and it depends only on the

rank and the degree of F when restricted to U(r,Λ). In fact, the Picard group of the latter

has a unique ample generator θr, so we have:

Θr,F = θlr

for some l. When the fixed determinant Λ = O, the moduli spaces appearing in the strange

duality morphism are SU(r) and U(k, k(g − 1)), and the morphism itself becomes:
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H0(SU(r), θkr )
∨ −→ H0(U(k, k(g − 1)),Θr

k)

where

Θk = {F ∈ U(k, k(g − 1)) : h0(F ) = h1(F ) 6= 0}

is a naturally defined line bundle. When moreover we set k = 1, the Verlinde formula (4)

simplifies dramatically:

z
SU(r)
1 (g) =

rg

(r + 1)g−1

r∏
p=1

∣∣∣∣2 sin
π

r + 1

∣∣∣∣g−1

= rg

and the corresponding isomorphism

H0(SU(r), θr)
∨ −→ H0(Jacg−1(X),Θr

1)

was established long before the Verlinde formula was known, using representation-theoretic

techniques which will be generalized in the abelian case. Strange Duality was first proved

generically, by Belkale in [Bel08], then a global statement was given Marian and Oprea

in [MO07] , and afterwards it was proved using different techniques again by Belkale in a

subsequent paper.

0.2 Bridgeland moduli spaces and wall crossing

0.2.1 MMP for moduli spaces of sheaves over a surface

Since the moment when moduli spaces became objects of interest in algebraic geometry, one

of the main questions that were asked was how to classify all their minimal models. The

first steps in this direction were moved by Hacon,McKernan,Cascini and Birkhar [BCHM10],

11



which lead to a better understanding of how to classify the minimal models of the moduli

space of stable curves ([HH09], [HH13]) or the Kontsevich moduli spaces of stable maps

([CC10, CC11]). In these cases, we learned several different approaches:

• Run the MMP;

• Vary the moduli functor;

• Vary the GIT stability condition that was used to construct the moduli space.

When the moduli space we consider is the Hilbert scheme of points on a given surface, how-

ever, it is not clear how to deform the moduli functor at all. A solution is given by considering

the Hilbert scheme as a moduli space of sheaves of some specific fixed type, and then by

modifying the polarization used to construct the Gieseker stability condition. This, however,

turns out not to cover all the minimal models for the Hilbert scheme. Recently, progress

was made by Arcara, Bertram, Coskun and Huizenga [ABCH12] in the case of P2[n], and an

answer was provided by the introduction of a broader notion of stability conditions, due to

Bridgeland in [Bri07], which allowed to construct moduli spaces of more complex objects,

such as complex of sheaves. This idea was later picked up by Yoshioka [Yos12a] and later by

Bayer and Macŕı [BM14a], who generalized such technique to the moduli spaces of sheaves

over abelian surfaces (respectively, K3 surfaces), providing also some important insight on

how to relate the understanding of stability conditions on a surface to the understanding

of the Nef and ample cones of the moduli spaces of Bridgeland stable objects and to the

MMP for moduli spaces of sheaves. A detailed description of the Nef and Ample cones is

showed to be achievable by constructing certain nef divisor classes arising in a natural way

from Bridgeland stability condition, and is crucial to classifying the minimal models of the

moduli spaces of sheaves. Since then, there has been a constant stream of results towards a

better understanding of the MMP for Hilbert schemes of points on other kinds of surfaces,

see e.g. [Nue14a] in the case of Enriques surfaces. One of the most interesting examples to

12



consider is that of general type surfaces: following the same path in this direction proves

often too hard, given the general bad behavior of their moduli spaces of sheaves.

0.2.2 Smooth projective surfaces of irregularity zero

In our joint paper [BHL+15], we look at smooth projective surfaces of irregularity zero, which

include families of general type surfaces and Del Mezzo surfaces of degree one. Given such

a surface X, we give criteria to study the ample cone of the Hilbert scheme of points X [n].

In particular, we prove the following:

Theorem 0.2.1 ([BHL+15], Theorem 1.2). Let X be a smooth projective surface of irregu-

larity 0, and suppose PicX ∼= ZH, where H is an ample divisor. Let a > 0 be the smallest

integer such that aH is effective. If

n ≥ max{a2H2, pa(aH) + 1},

then Nef(X [n]) is spanned by the divisor H [n] and the divisor

1

2
K

[n]
X +

(a
2

+
n

aH2

)
H [n] − 1

2
B. (∗)

An orthogonal curve class is given by letting n points move in a g1
n on a curve in X of class

aH.

In some specific examples, it is then possible to give a better bound in terms of the length

n:

Theorem 0.2.2 ([BHL+15], Theorem 1.3). Let X be one of the following surfaces:

1. a very general hypersurface in P3 of degree d ≥ 4, or

2. a very general degree d cyclic branched cover of P2 of general type.

In either case, Pic(X) ∼= ZH with H effective. Suppose n ≥ d−1 in the first case, and n ≥ d

in the second case. Then Nef(X [n]) is spanned by H [n] and the divisor class (∗) with a = 1.

13



Our strategy will be as follows:

• in Chapter 9, we will give a description of the higher rank walls.

• in Chapter 10, we will focus on surfaces with Picard rank one. Under this hypotesis,

the Nef cones is two-dimensional, hence it is sufficient to find two extremal rays in

order to have a complete description of it.

• in Chapter 11, we will further restrict to the case of Del Pezzo surfaces of degree one.

14



Part I

Part I: Generic Strange Duality on

abelian surfaces
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Chapter 1

Preliminaries

1.1 Generalities on hyperkähler manifolds

A compact Kähler surface X is a K3 surface if it is simply connected and it carries a global

homolorphic symplectic form (i.e. the canonical bundle KX
∼= OX). An example is given by

the Fermat quartic: consider the degree four polynomial P (X0, ..., X3) = X4
0 +X4

1 +X4
2 +X4

3 ∈

C[X0, ..., X3]. The vanishing locus S = V (P ) is an irreducible quartic hypersurface in P3
C,

which is simply connected by the Lefschetz Hyperplane Theorem, and has canonical bundle

KS = (OP3(−4)⊗OP3(4))|S ∼= OS by adjunction. Hence, the surface S is a K3 surface and,

by applying the same reasoning verbatim, every irreducible quartic hypersurface in P3
C is. K3

surfaces play a fundamental role in the classification of algebraic surfaces, hence it is natural

to look for generalizations in higher dimensions. The following (beautiful) classification

theorem motivates the definition of a hyperkähler manifold (HK):

Theorem 1.1.1 (Beauville-Bogomolov decomposition, [Bea83]). Let X be a compact Kähler

manifold with c1(X) = 0. There exists an étale finite cover
∏d

i=1 Mi −→ X where each of

the factors Mi is either a compact complex torus, a Calabi-Yau variety or a HK.

A Calabi-Yau variety (CY) is a compact Kähler manifold M of dimension n ≥ 3 with trivial
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canonical bundle and such that the Hodge numbers hp,0(X) vanish for 0 < p < n. These

can very well be considered generalizations of K3 surfaces, which indeed satisfy h1,0(X) =

0.1 Nonetheless, most of the strikingly interesting properties of K3 surfaces come from

the existence of a symplectic structure which is compatible with the complex holomorphic

structure, hence a more satisfactory generalization can be found in the following definition:

Definition 1.1.2. A compact Kähler manifold X is hyperkähler if it is simply connected

and the space of its global holomorphic two-forms is spanned by a symplectic form.

The only varieties which are both CY and HK are K3 surfaces, since the vanishing condition

hp,0(X) = 0 for 0 < p < dimX is compatible with the existence of a global holomorphic

symplectic form only when dimX = 2. In higher dimension, the first two families of examples

were produced by Beauville in [Bea83]: the Hilbert scheme of points over a K3 surface, and a

suitable subvariety of the Hilbert scheme of points over an abelian surface, called generalized

Kummer variety. More families of examples have been constructed since then, but they

can all be shown to be deformation equivalent to one of the two families already found by

Beauville. Recently, two more sporadic examples were found by O’Grady in [O’G99] and

[O’G03] by desingularizing a singular moduli space of sheaves on a K3 (respectively, abelian)

surface. The HK manifolds this obtained are ten (respectively, six) dimensional varieties,

which we will denote by M̃10 (respectively, M̃6).

1.2 Compact hyperkähler manifolds

We will now discuss some of the most interesting properties of compact hyperkähler mani-

folds, some of which are direct generalizations of the main properties of K3 surfaces.

1Indeed, the first homology group H1(X,Z) is the abelianization of the first homotopy group π1(X),
hence the simple connectedness of X implies the vanishing of the first Betti number b1(X). Now, since X is
Kähler, one has that b1(X) = h1,0 + h0,1 = 2h1,0.
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• (Hyperkähler geometry) The reason behind the name “hyperkähler“ lies in the

following fact: if X is a simply connected Kähler manifold with a global holomorphic

symplectic form spanning the space H2,0(X), then by Yau’s solution to Calabi’s con-

jecture there exists a Riemannian metric g on X such that the holonomy of (X, g) is

isomorphich to the tautological representation of the symplectic group

Sp(r) := {φ : Hr −→ Hr | φ is right-linear and φ(v)
t
· φ(w) = vt · w}

on Hr, where dimX = 4r. This can be interpreted as the existence of a quaternionic

structure on X, meaning that there are three distinct complex structures I, J and K

satisfying the quaternionic relations

I2 = J2 = K2 = IJK = −1.

Conversely, any manifold (X, I, J,K), having a quaternionic structure as above can be

thought as a complex manifold (X, I) with a global holomorphic symplectic form given

by the fact that Sp(r) = U(Hr) ∩ SO(Hr). It can be also shown that π1(X) = 0 (see

e.g. [Bea83]), hence X is a HK manifold.

Remark 1.2.1. Compact hyperkähler manifolds are often referred to as irreducible

holomorphic symplectic (IHS), because of the existence of a global symplectic form

spanning the space of homolorphic two-forms.

There are many examples of non-compact hyperkähler manifolds (some of the most

interesting both in representation theory being and in algebraic geometry the Nakajima

quiver varieties), and some recent results show that the local structure of compact HK

manifolds can be understood by means of those (see e.g. [AS15]).

• (The Beauville-Bogomolov form) The standard intersection pairing on the middle

cohomology group H2(S) := H2(S,C) of a K3 surface S can be shown to be even,
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unimodular and of signature (3, 19), hence isomorphic to the lattice

Λ = U⊕3 ⊕ E8(−1)⊕2.

Similarly, if X is HK and ω is its symplectic form, we have the following:

Theorem 1.2.2 (Beauville [Bea83] and Fujiki [Fuj87]). There exists a positive rational

number cX (Fujiki’s constant) and an integral indivisible non-degenerate symmetric

bilinear form (, )BB on H2(X) (Beauville-Bogomolov’s form) of signature (3, b2(X)−3)

such that the following hold:

1. (ω, ω)BB > 0,

2.
∫
X
α2n = cX · (α, α)nBB for α ∈ H2(X),

3. (α, α′)BB = 0 if α ∈ Hp,2−p(X), α′ ∈ Hp′,2−p′(X) with p+ p′ 6= 2.

The Beauville-Bolomolov form endows the cohomology group H2(X) with the structure

of a lattice. Such lattice structure, and the respective Fujiki constant, can be explicitly

computed for all the known examples (see e.g. [Rap08]).

• (Birational projective HK) A well-known fact about K3 surfaces is that they are all

deformation equivalent to each others. This was first proved by Kodaira in [Kod64],

and it is a consequence of the fact that every regular surface with trivial canonical

bundle can be deformed to the Fermat quartic. Moreover, if any two K3 are birational

equivalent, they can be shown to be isomorphic: indeed, the minimal model of a

surface of non-negative Kodaira dimension is unique. In higher dimension the situation

changes, but the above statement can be replaced by the following:

Theorem 1.2.3 (Essentially Theorem 4.6, [Huy99]). Two birational projective irre-

ducible symplectic manifolds are deformation equivalent and, hence, diffeomorphic.
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The result was used to show that most of the known examples, with the exception of

O’Grady’s exceptional examples in dimension six and ten, are deformations of the two

standard series provided by Hilbert schemes of points on K3 surfaces and generalized

Kummer varieties. It was first shown with projective techniques for projective HK

(under additional assumptions), and later extended to the current form using the same

techniques employed in the proof of the Torelli theorem for HK.

1.3 Examples: moduli spaces of sheaves on a K3 sur-

face and generalized Kummer varieties

Let S be a surface. The Mukai vector v(F ) of a sheaf F on S is the cohomology class

v(F ) = ch(F )
√

TdS, where TdS is the Todd class of the surface S. If we write any two

Mukai vectors in the form v = (r,Λ, s) and v′ = (r′,Λ′, s′) in H∗alg(X,Q) = Z⊕ NS(X)⊕ Z,

the Mukai pairing is the bilinear form

〈v, v′〉 =

∫
S

Λ · Λ′ − rs′ − r′s.

The Mukai vector, when seen as a morphism from the K-theory K(S), endowed with the

Euler pairing to the algebraic cohomology ring endowed with the Mukai pairing is an isom-

etry, and a very convenient way to enclose the invariants of a sheaf. The main two examples

we want to discuss are the following:

• (The moduli space of sheaves over a K3 surface) Let (X,H) be a polarized K3

surface, and v a Mukai vector. We denote by MH(v) the moduli space of semistable

sheaves on X with respect to H having Mukai vector v. The moduli spaceMH(v) is a

HK manifolds when the polarization H is generic with respect to v. It can be shown to

be of dimension 〈v, v〉+ 2 and deformation equivalent to the Hilbert scheme of points

X [n], where n = 1
2
〈v, v〉+ 1.
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• (The generalized Kummer variety) Let (X,H) be a polarized abelian surface, and

denote by X [n] the Hilbert scheme of n points over X. one can consider the addition

morphism Xn −→ X sending an n-tuple (x1, ..., xn) 7→ x1 + ...+xn. Such morphism is

clearly invariant under the action of the symmetric group which permutes the factors

of the product Xn, hence it descends to the symmetric product X(n). Let us denote

by a the composition of the addition morphism X(n) → X with the Hilbert-Chow

morphism X [n] → X(n). The locus

K [n] := {Z = (x1, ..., xn) ∈ X [n] | a(Z) = 0}

is called generalized Kummer variety. It can be shown to be a compact HK manifold

(see e.g. [Bea83]) of dimension 2(n − 1) with second Betti number b2(K [n]) = 7.

Similarly, denote by MH(v) the moduli space of sheaves on X with Mukai vector v:

one can consider the Albanese morphism

Alb :MH(v) −→ X × X̂ , E 7→ (detE, det RS(E)),

where RS(E) denotes the Fourier-Mukai transform of E with respect to the Poincaré

bundle (see next chapter). One can show that the fibers of the morphism Alb are all

irreducible and isomorphic. Let us denote by

Kv := Alb−1(0, 0).

Then Kv is a HK manifold which is deformation equivalent to K [n], where n =

1
2
〈v, v〉 + 1. The generalized Kummer variety, and its irreducible holomorphic sym-

plectic structure, will be studied extensively in Part I.

1.4 Fourier-Mukai transforms

Fourier-Mukai transforms are a powerful tool when dealing with derived categories of coher-

ent sheaves over a variety. Functors that are of Fourier-Mukai type behave well with respect

22



to elementary functorial operation: they admit left and right adjoints, the composition of

two Fourier-Mukai transforms is again of Fourier-Mukai type and, finally, there are explicit

conditions which allow one to decide whether a Fourier-Mukai transform is an equivalence

or not. There are two main results in the theory of Fourier-Mukai transforms: the first one,

which is due to Orlov (Theorem 1.4.3), states that each exact quivalence between two derived

category D(X) and D(Y ), where X and Y are smooth projective varieties, is isomorphic to

an equivalence of Fourier-Mukai type. The second one, which is a corollary of Theorem

1.4.3, gives a description of the group AutD in some particular cases. It states that if X

is a smooth projective variety with ample canonical or anticanonical sheaf, then the group

AutD(X) is generated by shifts, automorphisms of the variety and twist by line bundles

(we will later explain what a twist functor is). Fiber-wise Fourier-Mukai transforms will be

introduced later and used extensively in chapter 4.

Let us now explain some heuristic behind the Fourier-Mukai transforms. First, recall what

the classical the Fourier transform is. It is something like this: given a function f(x), the

Fourier transform of f is the function g(y) :=
∫
f(x)e2πixydx.

Let us give a quick description of the Fourier-Mukai transform:

1. Given two varieties X and Y , and a sheaf P on X × Y . The sheaf P sometimes is

called the “integral kernel”. Take a sheaf F on X. Think of F as being analogous to

the function f(x) in the classical situation. Think of P as being the analogous, in the

classical situation, of some function of x and y.

2. Now pull back the sheaf along the projection q : X × Y → X. Think of the pullback

q∗F as being the analogous of the function f(x), and of P as being analogous to the

function e2πixy.

3. Next, take the tensor product q∗F ⊗ P . This is analogous to the function f(x)e2πixy.
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4. Finally, push down q∗F ⊗ P along the projection p : X × Y → Y . The result is the

Fourier-Mukai transform of F — it is p∗(q
∗F ⊗P). This last pushforward step can be

thought of as “integration along the fiber”: here the fiber direction is the X direction.

So in the classical situation it is g(y) =
∫
f(x)e2πixydx, which is the Fourier transform

of f(x).

To make all of this rigorous, we have to deal with derived categories of coherent sheaves, not

just coherent sheaves. In this context the main difficulty is the pushforward operation. As

is well known, the pushforward of a coherent sheaf is not always coherent. But we can use

the derived pushfoward instead, at the “price” of having to deal with derived categories.

When X is an abelian variety, Y is the dual abelian variety, and P is the Poincare line

bundle on X × Y , then the Fourier-Mukai transform gives an equivalence of the derived

category of coherent sheaves on X with the derived category of coherent sheaves on Y . This

was proved by Mukai. This is supposed to be analogous to the statement I made about the

classical Fourier transform being invertible. In other words the Poincare line bundle is really

supposed to be analogous to the function e2πixy. A more general choice of P corresponds

to, in the classical situation, so-called integral transforms, i.e. transforms of Fourier type

with a different kernel. They do not have, in general, all the good properties of the Fourier

transform, but they can be nonetheless studied to provide examples of transforms between

functions in Lp spaces. This is probably why P is called the integral kernel: to recall the

kernel of the Fourier-transform. When X is an abelian variety, therefore, the analogies

between the classical Fourier transform and the Fourier-Mukai transforms are stronger, and

some of the properties which make the Fourier transform a powerful tool in analysis are

analogously resembled in the algebraic geometric version. This topic is completely treated

in [Muk81].

In this chapter, we will give the definition of the Fourier-Mukai transform, and we will its
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basic properties and give some interesting examples of how it can be applied.

1.4.1 Definition and first properties

Let X and Y be smooth projective varieties2, and let

X × Y
q

{{

p

##
X Y

be the projection on each of the two factors. To each object P ∈ D(X×Y ) , we can associate

an exact functor of triangulated categories ΦP : D(X) −→ D(Y ), which is defined as follows:

ΦP : D(X) −→ D(Y )

F• 7→ Rp∗(P
L
⊗ Lq∗F•).

Notation 1.4.1. Now and later, we will write f∗, f
∗,⊗, Hom, Hom respectively for Lf∗,

Rf ∗,
L
⊗, RHom, RHom: there is no risk of confusion, as we will always work in the derived

context.

Remark 1.4.2. Be careful! The two notations HomD(X)(•, •) and Hom(•, •) refer to differ-

ent objects.

Let us notice some a basic consequence of the definition. The functor ΦP is called Fourier-

Mukai Transform of kernel P . Notice that it is always exact, because it is the composition

of three exact functors, namely p∗, q
∗ and P⊗, which we have proved to be exact in the first

chapter. The exactness of a functor in the triangulated context is really important, much

more than in the abelian context: an exact functor of triangulated categories commutes

with the shift, which means more or less that we can treat each complex in the derived

category like a direct sum of sheaves (in Proposition ?? we will prove that any complex is

2By a variety we mean an integral separated scheme of finite type over an algebraically closed field
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isomorphic to a direct sum of shifted sheaf). A triangulated functor which is not exact is,

therefore, much less manageable: for this reason, we will focus our attention exclusively on

exact functors all through the chapter.

Properties:

1. The identity

id : D(X) −→ D(X)

is isomorphic to the Fourier-Mukai transform with kernel O∆, where ∆ ⊂ X × X is

the diagonal .

2. If f : X −→ Y is a morphism between algebraic varieties, then

f∗ ∼= ΦOΓf
: D(X) −→ D(Y ).

3. The shift functor [1] : D(X) −→ D(X) is isomorphic to the FMT with kernel O∆[1].

4. The composition of two arbitrary FMT is again a FMT. Let X, Y, Z be smooth pro-

jective varieties over a field k, as in the introduction to the Chapter. Consider objects

P ∈ D(X×Y ), Q ∈ D(Y ×Z). Then define an object R in D(X×Z) by the formula:

R := πXZ∗(π
∗
XYP ⊗ π∗Y ZQ),

where

X × Y × Z
πXY

ww
πXZ

��

πY Z

''
X × Y X × Z Y × Z.

Then one has ΦQ ◦ ΦP ∼= ΦR, as displayed below:
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D(X)
ΦP //

ΦR

66
D(Y )

ΦQ // D(Z).

For the proof, simply look at this commutative diagram:

π∗XY P⊗π
∗
Y ZQ

X × Y × Z
πXY

vv

πY Z

((

πZ

��

πX

		

πXZ

��

P
X × Y

q

~~

p

  

Q
Y × Z

u

~~

t

  
X Y X × Z

R
r

zz

s

$$

Y Z

X Z .

The importance of Fourier-Mukai transforms is shown in the following Theorem, which is

due to Orlov.

Theorem 1.4.3. Let X and Y be shooth projective varieties and let

F : D(X) −→ D(Y )

be a fully faithful functor. If F admits left and tight adjoint functors, then there exists an

object P ∈ D(X × Y ) such that

ΦP ∼= F.

Proof. The proof is highly non-trivial, so we will just give references. There are two accounts

of it in literature: the original one due to Orlov in [Orl02], and another one due to Kawamata

in [Kaw02].

The following example gives an idea of how one can lose information while passing from the

objects in the derived category of the product to the corresponding Fourier-Mukai transforms.
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1.4.2 Fourier-Mukai transforms on abelian varieties

Historically, the first Fourier-Mukai transform was introduced by Mukai in [Muk81] in the

setting of abelian varieties: specifically, the source variety X is an abelian variety and the

target variety Y = X̂ is its dual. Moreover, the kernel considered by Mukai is the normalized

Poincaré bundle, i.e. the unique line bundle P on X × X̂ such that

P|{x}×X̂ ∼= OX̂ , P|X×{y} ∼= y.

Definition 1.4.4. The abelian FMT is the functor

RS : Db(X)→ Db(X̂) , RS(F•) = Rp∗(P ⊗ q∗F•).

Mukai proved that such FMT is an equivalence. We would like to consider a few properties.

1. (IT and WIT sheaves) We say that WIT (weak index theorem) holds for a certain

coherent sheaf F on X if RS(F )i = 0 for all but one i. In other words, we say

that WIT holds if RS(F ) is isomorphic to a complex concentrated in degree i, i.e. if

RS(F ) ∼= F̂ [−i(F )] for some i(F ). We say, moreover, that IT holds for F if in addition

the sheaf F̂ is locally free.

Example 1.4.5. Any nondegenerate line bundle is ITi for only one i and i is called

the index of the line bundle.

We have the following result:

Proposition 1.4.6. [RBB09, Proposition 1.7, Corollary 3.4 and 3.5] Let g := dimX.

(a) A coherent sheaf F on X is ITi if and only if Hj(X,F ⊗ Py) = 0 for all y ∈ Y

and for all j 6= i, where Py denotes the restriction of P to Xy. Furthermore, F

is WIT0 if and only if it is IT0.

(b) If F is WITi, then F̂ := RS(F ) is WITg−i. Moreover
ˆ̂
F ∼= F .
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(c) For every sheaf E on X, the sheaf RS0(E) is WITg, while the sheaf RSg(E) is

WIT0 (and hence IT0 by part 1).

Skyscraper sheaves are IT0, while the sheaves Px are WITg but not IT , since it can

be shown that for every x ∈ X one has that P̂x ∼= Ox[−g].

2. (Cohomology of Poincaré bundle). It is possible to show that RS(OX) ∼= O0̂[−g].

This is equivalent to saying that:

Rip∗(P) =


O0̂ if i = g

0 otherwise.

This immediately implies, by using a Leray spectral sequence:

H i(X × X̂,P) =


C if i = g

0 otherwise.

3. (Parseval’s theorem) Like many other analogies with the classical Fourier transform,

a result that goes through is an analogue of Parseval’s theorem. More specifically, the

following holds:

Theorem 1.4.7. [Muk81, Corollary 2.5] Assume that WIT holds for F and G. Then

ExtiOX (F,G) ∼= Exti+µOX̂
(F̂ , Ĝ) for every integer i, where µ = i(F ) − i(G). Especially,

we have an isomorphism ExtiOX (F, F ) ∼= ExtiOX̂ (F̂ , F̂ ) for every i.

This has many corollaries, but the one of the most interesting it is the following:

Corollary 1. If F is an ITi sheaf on X, then the Euler characteristic of F and the

rank of F are related by

χ(X,F ) = (−1)irk(F ).
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Proof. One has χ(X,F ) =
∑

j(−1)jhj(X,F ) =
∑

j(−1)j dim Extj+g−i(O0̂, F̂ ). Since

F is locally free, Serre duality gives Extj+g−i(O0̂, F̂ ) ∼= h0(X,O0̂ ⊗ F̂ ). This vanishes

unless j = i, and in that case we have h0(X,O0̂ ⊗ F̂ ) = rk(F ).

4. (Cohomological FMT) The topological invariants of the Abelian Fourier-Mukai

transform can be computed by means of the Grothendieck-Riemann-Roch theorem

in terms of the first Chern class of the Poincaré bundle. The cohomological FMT takes

the form

RSH(α) = p∗(ch(P) · q∗(α))

for α ∈ H∗(X,Q). More explicitly, the Chern character of the Fourier-Mukai transform

of a complex F• ∈ Db(X) is given by:

chk(RS(F•)) =
1

k!
p∗[c1(P)k · chg−k(F•)] = RSH(chg−k(F•)).

This really shows how the FMT “flips” the Chern character of a complex.

Let us now restrict to the case when g = 1, i.e. our abelian variety is an elliptic curve.

There we have seen that, in view of property 3, the FMT with the standard Poincaré line

budle as a kernel switches the rank and the degree (which on an elliptic curve is equal to

the Euler characteristic by Riemann-Roch) of a sheaf. We now want to consider a slightly

different setup. One can replace the target variety with the moduli space Y :=MX(a, b) of

semistable vector bundles of rank a and degree b, for any pair of coprime integers a and b:

by a result of Atiyah (see e.g. [Ati57, Tu93]) this is a fine moduli space, and there exists a

canonical isomorphism

X
∼=−→MX(a, b) , x 7→ Wa,b ⊗OX(oX − x)

where Wa,b is the Atiyah bundle, i.e. the unique semistable vector bundle of rank a and

determinant OX(boX). Therefore, one can consider the universal family Pa,b over X × Y ,
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which is going to satisfy the usual constraint:

Pa,b|X×{E} ∼= E

and let us denote by n := degPa,b|{x}×Y .

The cohomological FMT

ΦH
Pa,b : H∗alg(X,Z) → H∗alg(Y,Z)

Z⊕ Z Z⊕ Z
needs therefore to be representable by an integral, two by two matrix with determinant one

(by property 3), hence an element of SL2(Z), say

M =

 x y

z w

 .

Now, in order to find out the coefficients of such matrix, it is enough to compute:

x y

z w


1

0

 =

x
z


and x y

z w


0

1

 =

y
w

 ,

that is,

(x, z) = ch(Rp∗(Pa,b)) and (y, w) = ch(Rp∗(Pa,b ⊗ q∗O0)).

Since rkNS(X × Y ) = 3 and NS(X × Y ) is generated by the divisor classes ∆, [X × 0] and

[0 × Y ], the class ∆ being the graph of the natural isomorphism X ∼= Y , one has that the

first Chern class of the vector bundle Pa,b is of the form

c1(Pa,b) = s∆ + t[X × 0] + u[0× Y ]
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for some s, t and u integers. In fact, by restricting the vector bundle Pa,b to each factor, it

is possible to show (cf. e.g. [MO14a]) that

c1(Pa,b) = ∆ + (n− 1)[X × 0] + (b− 1)[0× Y ],

Therefore che Chern character of Pa,b is

ch(Pa,b) = a+ ∆ + (n− 1)[X × 0] + (b− 1)[0× Y ] + χω,

where χ = χ(X × Y,Pa,b) and ω is the class of a point. Hence we calculate:

ch(Rp∗(Pa,b)) = Rp∗ch(Pa,b))

= Rp∗(a+ ∆ + (n− 1)[X × 0] + (b− 1)[0× Y ] + χω)

= b+ χω,

therefore (x, z) = (b, χ). Now we will need to calculate

(y, w) = (rkRp∗(Pa,b ⊗ q∗O0), deg Rp∗(Pa,b ⊗ q∗O0)).

Cohomology and base change implies that, for any E ∈ Y :

rkRp∗(Pa,b ⊗ q∗O0) = χ(E ⊗O0)

= h0(E ⊗O0)

= rkE = a,
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while by Riemann-Roch we compute:

deg Rp∗(Pa,b ⊗ q∗O0)) =

∫
X

c1Rp∗(Pa,b ⊗ q∗O0))

=

∫
X

[chRp∗(Pa,b ⊗ q∗O0))]1

=

∫
X

a+ nω

= n.

Therefore, we find that:

M =

 b a

χ n

 ,

and bn− aχ = 1. This also shows that a vector bundle with Chern character n− χω is sent

to a degree zero line bundle:b a

χ n


 n

−χ

 =

 bn− aχ

χn− nχ

 =

1

0

 .

The FMT with this generalized kernel does not quite exchange rank and degree as the

classical FMT does, but we have just shown that it is still possible to completely work out

how Chern characters are transformed.

1.4.3 Fiber-wise Fourier-Mukai transforms

In this subsection, we consider a relative version of the Fourier-Mukai functors we studied

in the previous subsection. This will allow us to work in the framework of schemes over a

base. We consider proper morphisms of algebraic surfaces X → C and Y → C, where C is

a smooth algebraic curve, and use an element in the derived category of the fibered product

X ×C Y as a kernel to define an integral functor between the derived categories of X and
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Y . In the special case we are looking at, each of the two morphisms X → C and Y → C

will be a genus one fibration, i.e. a surjective morphisms having a curve of arithmetic genus

one as a general fiber. In this setup, we will be allowed to apply the standard Fourier-Mukai

machinery we developed for abelian varieties in a relative fashion, giving us the possibility

to extend such machinery to a larger class of algebraic varieties.

Consider proper morphisms of algebraic varieties πX : X −→ C and πY : Y −→ C. We

denote by p and q the projections of the fiber product X ×C Y onto the first (respectively,

the second) factor, and by π = πX ◦ p = πY ◦ q the projection onto the base curce C. We

have the following cartesian diagram:

X ×C Y
p

zz
π

��

q

$$
X

πX

$$

Y
πY

zz
C.

For any object E• ∈ Db(Coh(X×C Y )), we can construct a relative Fourier-Mukai transform

as follows:

ΦE• : Db(Coh(X))→ Db(Coh(Y )) , ΦE•(F•) = Rq∗(E• ⊗L p∗F•)

Regarding the kernel E• as an object in Db(Coh(X × Y )) via the pushforward

j∗ : Db(Coh(X ×C Y )) ↪→ Db(Coh(X × Y )),

where j : X ×C Y ↪→ X × Y in the standard inclusion, and then taking the standard

Fourier-Mukai transform would yield the same result.

Consider now the case where π : X → C is a relatively minimal genus one fibration with X

an algebraic surface, and let f be the class of a smooth fiber. We denote by λX the minimal
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fiber degree, i.e. the minimal positive integer such that the fibration π : X → C admits a

holomorphic λX-multisection, and let σ be such multisection. Given a sheaf E on X, we

denote its Chern character by the triple

ch(E) = (r(E), c1(E), c2(E)) ∈ Z× NS(X)× Z.

We are interested in looking at the fiber degree of E, i.e. at the integer

d(E) := c1(E) · f.

We are going to exploit the machinery we introduced in the previous subsection in a relative

fashion. Consider invariants v = (r, c1, c2) such that the coprimality condition

(r, d) = (r, c1 · f) = 1

is satisfied. Take also a suitable polarization in the sense of Friedman ([Fri98]), i.e. a

polarization H such that

H = σ +Nf , N � 0

. One can form the moduli spaceMH(v), as before. Since the polarization H reads stability

in terms of stability on the fibers, we have a moduli space that looks like a family of moduli

spaces over elliptic curves varying on a basis. One can then hope for a relative version of

the result we had before. In particular, for each pair of coprime integers a and b, one can

construct a relative compactified Jacobian Y := JacX(a, b), which can be seen either as the

component of the relative moduli space of relatively stable sheavesM(X/C)→ C containing

rank a, degree b sheaves, or as the moduli space of rank zero sheaves supported on fibers

MX(0, af, b). It is possible to prove that the compactified relative Jacobian is irreducible

and projective, and it admits a natural genus one fibration π̂ : JacX(a, b) → C itself. We

have the following result:

Theorem 1.4.8. [Bri97] The moduli space M = MH(r, c1, c2) is a smooth (non-empty)

projective variety and is birationally equivalent to

Pic0(JacX(a, b))× Hilbt(JacX(a, b)),
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where (a, b) is the unique pair of integers satisfying br − a(c1 · f) = 1 and 0 < a < r.

Furthermore, if r > at the birational equivalence extends to give an isomorphism of varieties.

This is achieved by using a Fourier-Mukai transfom with the relative kernel Pa,b on the

product X ×C JacX(a, b): such kernel is a relarive universal family for the relative moduli

space JacX(a, b), namely

Pa,b|Xπ̂(E)×{E}
∼= E

for every point E ∈ (JacX(a, b)) representing a stable rank a, degree b vector bundle on the

fiber Xπ̂(E). It is possible to show that such a kernel gives an equivalence, which is also

regular in codimension two, and which sends sheaves on X with invariants (r, c1, c2) to rank

one sheaves on the relative Jacobian.

We are going to use this result extensively in chapter 4.
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Chapter 2

The setup

This chapter appears in the paper [BMOY14] as Section 1.

Three versions of Le Potier’s strange duality conjecture were formulated in [MO14a] for a

polarized abelian surface (X,H). We recall them briefly.

For a sheaf E → X, we write

v(E) = chE ∈ H2?(X, Z)

for its Mukai vector. For two Mukai vectors

v = (v0, v2, v4), w = (w0, w2, w4) ∈ H2?(X,Z),

the Mukai pairing is given by

〈v, w〉 =

∫
X

v2w2 − v0w4 − v4w0.

We also set standardly

v∨ = (v0,−v2, v4) ∈ H2?(X,Z).

Let Mv be the moduli space of Gieseker H-semistable sheaves with Mukai vector v. When

v is primitive and the polarization H is generic, the moduli space Mv consists of stable
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sheaves only, and is smooth projective of dimension

dimMv = 2dv + 2, where dv =
1

2
〈v, v〉.

We will make this assumption about the moduli spaces throughout the paper, unless specified

otherwise. We furthermore consider three subspaces of Mv:

- the space M+
v of sheaves with a fixed determinant line bundle;

- the space M−
v of sheaves with fixed determinant of their Fourier-Mukai transform;

- the space Kv of sheaves for which both the determinant and the determinant of their

Fourier-Mukai transform is fixed.

In introducing the spaces M−
v , Kv, we use the Fourier-Mukai transform

RS : D(X) −→ D(X̂)

with respect to the standardly normalized Poincaré line bundle

P → X × X̂.

The moduli space Kv is precisely the fiber of the Albanese map

a :Mv → X × X̂.

The morphism a is defined up to the choice of a reference sheaf E0 of type v. Specifically,

a(E) = (det RS(E)⊗ det RS(E0)∨, detE ⊗ detE∨0 ).

Consider now two Mukai vectors v and w, orthogonal in the sense that

〈v∨, w〉 = −χ(X, v · w) = 0.

A sheaf F → X with Mukai vector

w = ch(F ) ∈ H2?(X,Z)
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gives rise to a line bundle

ΘF →Mv

by the standard determinant construction described in [LP96], [Li96]. Specifically, if a

universal family E →Mv ×X exists, we set

ΘF = det Rp!(E ⊗ q?F )−1 →Mv, (2.1)

where p, q are the two projections. By restriction, one gets line bundles on each of the

subspaces M+
v ,M−

v , Kv.

Within a fixed Mukai class w, for each of the four moduli spaces considered, the dependence

of the determinant line bundle on F takes a particular form, as explained in [MO14a]:

- on Kv, the line bundle ΘF = Θw depends only on the Mukai class w of F ;

- on M+
v , the line bundle ΘF is constant as long as the determinant of F is fixed;

- on M−
v , the line bundle ΘF is constant as long the determinant of the Fourier-Mukai

transform of F is fixed;

- on Mv, the line bundle ΘF is constant as long as F has both its determinant and its

FM-transform determinant fixed.

Keeping these variations in mind, we write Θw for the determinant line bundle on each of

the four moduli spaces, suitably understood. The distinctions above are further highlighted

by the numerical equalities, cf. [MO08a]:

χ(Kv, Θw) = χ(Mw, Θv) =
d2
v

dv + dw

(
dv + dw
dv

)
, (2.2)

χ(M+
v , Θw) = χ(M+

w , Θv) =
1

2

c1(v ⊗ w)2

dv + dw

(
dv + dw
dv

)
,

χ(M−
v , Θw) = χ(M−

w , Θv) =
1

2

c1(v̂ ⊗ ŵ)2

dv + dw

(
dv + dw
dv

)
.

Here, v̂ and ŵ denote the cohomological Fourier-Mukai transforms of v and w.
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Following Le Potier’s original strange duality proposal [LP92], it was shown in [MO14a] that

the Brill-Noether divisors

Θ+ = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ M+
v ×M+

w

and

Θ− = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ M−
v ×M−

w

induce isomorphisms of spaces of sections

D+ : H0(M+
v , Θw)∨ −→ H0(M+

w , Θv),

D− : H0(M−
v , Θw)∨ −→ H0(M−

w , Θv),

for infinitely many Mukai vectors v and w and for an abelian surface (X,H) which is a

product of elliptic curves.

In this paper we focus on the third possible geometry, associated with the divisor

Θ = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ Kv ×Mw.

The current setting is particularly interesting since it exhibits the fixed versus unfixed de-

terminant asymmetry also present for moduli spaces of bundles over curves [Bea95]. In this

asymmetric setup, we establish the duality generically for a large class of Mukai vectors v

and w, as captured in our main Theorem 6 below. We now explain the salient points of the

argument and state the most important results along the way.

The starting point is the case when v and w are Mukai vectors of rank 1. For each integer

a > 0, we let X [a] be the Hilbert scheme of a points on X, and let

K [a] ⊂ X [a]

be the generalized Kummer variety of a points adding to zero on X. When rank v = rank

w = 1, we have

Kv ' K [a], Mw ' X [b] × X̂,

for suitable a, b. In this setup, we prove

40



Theorem 4. Let L → X be an ample line bundle on an arbitrary abelian surface. Write

χ(X,L) = χ = a+ b for positive integers a and b. The divisor

ΘL = {(IZ , IW , y) with H0(IZ ⊗ IW ⊗ y ⊗ L) 6= 0} ⊂ K [a] ×X [b] × X̂

induces an isomorphism

DL : H0(K [a], Θv)
∨ −→ H0(X [b] × X̂, Θw).

The analogous isomorphism when both sides involve the Hilbert schemes X [a] and X [b] and

the theta bundles over them was shown to hold for all surfaces in [MO08b]. By contrast,

Theorem 4 is a subtler statement specific to abelian surfaces. Its proof requires new ideas

and is obtained using the representation theory of the Heisenberg group.

Paralleling [MO14b] and [MO14a], the above result implies strange duality for product

abelian surfaces via Fourier-Mukai techniques. Specifically, for moduli spaces of sheaves

which are stable with respect to a suitable polarization in the sense of Friedman [Fri98], we

show

Theorem 5. Let X = B × F be a product abelian surface. Assume v and w are two

orthogonal Mukai vectors of ranks r, r′ ≥ 2 with

c1(v) · f = c1(w) · f = 1.

Then, the locus

Θ = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ Kv ×Mw

is a divisor, and induces an isomorphism

D : H0(Kv,Θw)∨ → H0(Mw,Θv).

In order to move from the product geometry of Theorem 5 to a generic abelian surface, we

study the Verlinde sheaves

V,W→ A.
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These are defined in Section 5, and encode the spaces of generalized theta functionsH0(Kv, Θw)

and H0(Mw, Θv) respectively, as the pair (X,H) varies in its moduli space A. We need to

ensure that the Verlinde sheaves are generically locally free of expected rank given by the

holomorphic Euler characteristics (2.2):

rank V = rank W =
d2
v

dv + dw

(
dv + dw
dv

)
.

We establish this in our situation by showing that for surfaces of Néron-Severi rank 1 the

theta line bundles are big and nef, and therefore carry no higher cohomology. This yields

the following generic strange duality statement, which constitutes our main result.

Theorem 6. Assume (X,H) is a generic primitively polarized abelian surface, and v, w are

two orthogonal Mukai vectors of ranks r, r′ ≥ 2 with

(i) c1(v) = c1(w) = H;

(ii) χ(v) < 0, χ(w) < 0.

Then, the locus

Θ = {(E,F ) with H0(E ⊗L F ) 6= 0} ⊂ Kv ×Mw

is a divisor, and induces an isomorphism

D : H0(Kv, Θw)∨ −→ H0(Mw, Θv).

While the statements of Theorems 5 and 6 mirror the K3 and abelian cases studied in [MO13]

and [MO14a], different arguments are needed in the current asymmetric abelian setup. Sev-

eral technical assumptions present in [MO13] and [MO14a] are in addition removed, yielding

stronger results.

Finally, in Section 6 we show in great generality that the Verlinde sheaves

V,W→ A
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are in fact locally free over the entire moduli space A even though the higher cohomology of

theta line bundles may not vanish. Specifically, this is implied by the following

Theorem 7. Let (X,H) be a polarized abelian surface. Assume that

v = (r, dH, χ), w = (r′, d′H,χ′)

are orthogonal primitive Mukai vectors of ranks r, r′ ≥ 2 such that

(i) d, d′ > 0;

(ii) χ < 0, χ′ < 0.

Assume furthermore that if (d, χ) = (1,−1), then (X,H) is not a product of two elliptic

curves. We have

h0(Kv,Θw) = χ(Kv,Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
.

Moreover, for any representative F ∈ Kw,

h0(Mv,ΘF ) = χ(Mv,ΘF ) =
d2
w

dv + dw

(
dv + dw
dv

)
.

The proof uses Bridgeland stability conditions, and relies on recent results concerning wall-

crossing as stability varies. As walls are crossed, the dimensions of the space of sections

do not change. Crucially, we show that we can move away from the Gieseker chamber to

a chamber for which the theta line bundles become big and nef. In order to control the

wall-crossings and complete the argument, we make use of the explicit description of the

movable cone of the moduli space recently obtained in [Yos12b]; see also [BM14a].
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Chapter 3

The rank one case

This chapter appears in the paper [BMOY14] as Section 2.

3.1 Notation and preliminaries

We let X be an arbitrary abelian surface and consider two Mukai vectors v and w with

rank v = rankw = 1.

Specifically, letting L → X be an ample line bundle, and writing χ(L) = a + b for positive

integers a and b, we set

v = (1, 0, −a), w = (1, c1(L), a).

We then have

Kv ' K [a], Mw ' X [b] × X̂,

and the strange duality divisor is

ΘL = {(IZ , IW , y) with H0(IZ ⊗ IW ⊗ y ⊗ L) 6= 0} ⊂ K [a] ×X [b] × X̂. (3.1)

Conforming to standard notation, we next set

L[a] = det Rp? (OZ ⊗ q?L) on X [a],
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where Z ⊂ X [a] ×X is the universal subscheme, and p, q are the projections to X [a] and X

respectively. Throughout this section we also use

L[a] → K [a]

to denote the restriction of the determinant line bundle to K [a] ⊂ X [a].

The divisor

Θ+
L = {(IZ , IW ) with H0(IZ ⊗ IW ⊗ L) 6= 0} ⊂ X [a] ×X [b], (3.2)

with associated line bundle

O(Θ+
L) = L[a] � L[b] over X [a] ×X [b]

induces an isomorphism

D+
L : H0(X [a], L[a])∨ −→ H0(X [b], L[b]). (3.3)

This constitutes the simplest instance of the strange duality phenomenon on surfaces; the

isomorphism is described in [MO08b] and holds uniformly irrespective of the choice of surface.

Relative to this standard rank one setup, the divisor ΘL represents a twist specific to the

abelian geometry. In particular, the associated line bundle takes the more complicated form

O(ΘL) = L[a] � L[b] � L̂⊗ (a, id)?P on K [a] ×X [b] × X̂, (3.4)

where P → X × X̂ is the Poincaré line bundle, and

a : X [b] → X

denotes the addition of points using the group law. We have also set

L̂ = det RS(L)−1 on X̂.

Expression (3.4) is obtained by restricting to each factor and using Mumford’s see-saw theo-

rem; a detailed explanation is found in Example 1 of [Opr11]. Establishing that the induced

map on the spaces of sections

DL : H0(K [a], L[a])∨ −→ H0
(
X [b] × X̂, L[b] � L̂⊗ (a, id)?P

)
(3.5)
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is an isomorphism requires new ideas which we now describe.

3.2 Proof of Theorem 4

To begin, note that both sides of (3.5) have equal dimensions given by the Euler characteris-

tics (2.2). For the left hand side, this follows from either Lemma 3 or Example 9 in [Opr11]:

both show the vanishing of the higher cohomology of

L[a] → K [a]

under the assumption that L→ X is ample. For the right hand side, we can invoke Propo-

sition 5 of Section 6 which applies to the current context as well. A direct argument is also

possible making use of the étale pullbacks of the proof below.

We rephrase the statement of the theorem in two steps. To start, let

ϕL : X −→ X̂, ϕL(x) = t?xL⊗ L−1

be the Mumford homomorphism; we also make use of ϕL̂ : X̂ −→ X. Consider now the

diagram

K [a] ×X [b] × X̂

Φ̂
��

Ψ

((
K [a] ×X [b] ×X

Φ
��

Γ // X [a] ×X [b]

K [a] ×X [b] × X̂

where

Φ(IZ , IW , x) = (IZ , t
?
xIW , ϕL(x)) ,

Φ̂(IZ , IW , y) =
(
IZ , IW , ϕL̂(y)

)
,

Γ(IZ , IW , x) = (t?−xIZ , IW ),

Ψ(IZ , IW , y) = (t?−ϕ
L̂

(y)IZ , IW ) =⇒ Ψ = Γ ◦ Φ̂.
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All four maps are étale:

- Φ and Φ̂ have degree χ2 = χ(L)2 = χ(L̂)2;

- Γ has degree a4 since it can be viewed as quotienting by the group of a-torsion points

on X;

- Ψ = Γ ◦ Φ̂ has degree a4χ2.

We now pull back the divisor ΘL ⊂ K [a] ×X [b] × X̂ twice, first by Φ and then by Φ̂.

Pullback under Φ

At the first stage, we obtain

Φ?ΘL = {(IZ , IW , x) with H0(IZ ⊗ t?xIW ⊗ ϕL(x)⊗ L) 6= 0}

= {(IZ , IW , x) with H0(IZ ⊗ t?xIW ⊗ t?xL) 6= 0}

= {(IZ , IW , x) with H0(t?−xIZ ⊗ IW ⊗ L) 6= 0}

= Γ?Θ+
L .

By contrast with expression (3.4), the line bundle associated with Φ?ΘL has the simpler form

O(Φ?ΘL) = O(Γ?Θ+
L) = Γ?(L[a] � L[b]) = L[a] � L[b] � La on K [a] ×X [b] ×X.

The pullback divisor induces the map Φ?DL for which the diagram

DL : H0(K [a], L[a])∨ // H0
(
X [b] × X̂, L[b] � L̂⊗ (a, id)?P

)
Φ?

��
Φ?DL : H0(K [a], L[a])∨ // H0

(
X [b] ×X, L[b] � La

)
commutes. To show the original duality map DL is injective (and thus by equality of dimen-

sions an isomorphism), it suffices to show that the simpler Φ?DL in the above diagram is

injective.
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Pullback under Φ̂

The second pullback, under Φ̂, yields the divisor

Θ̃L = Φ̂?Φ?ΘL

associated with the line bundle

O(Θ̃L) = Φ̂?(L[a] � L[b] � La) = L[a] � L[b] � ϕ?
L̂
La on K [a] ×X [b] × X̂.

Crucially, by our previous interpretation of Φ?ΘL, we also have

Θ̃L = Φ̂?Φ?ΘL = Φ̂?Γ?Θ+
L = Ψ?Θ+

L .

By the same argument as before, to show that the original duality map (3.5) is an isomor-

phism, it suffices to show that

Proposition 1. The morphism D̃L : H0(K [a], L[a])∨ −→ H0(X [b]× X̂, L[b]�ϕ?
L̂
La) induced

by Θ̃L is injective.

Proof. We interpret the duality map representation-theoretically, using the theory of discrete

Heisenberg groups. D̃L is better suited for such an interpretation than the seemingly simpler

morphism Φ?DL obtained at the previous stage.

We have seen above that

Ψ?O(Θ+
L) = Ψ?(L[a] � L[b]) = L[a] � L[b] � ϕ?

L̂
La.

Up to numerical equivalence on X̂, we have ϕ?
L̂
L = L̂χ. Thus, there exists y ∈ X̂ such that

ϕ?
L̂
L = t?yL̂

χ.

We define

M = L⊗ y
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and calculate

M̂ := det RS(M)−1 =⇒ M̂ = t?yL̂ =⇒ M̂aχ = t?yL̂
aχ = ϕ?

L̂
La.

Therefore,

Ψ?(L[a] � L[b]) = L[a] � L[b] � M̂aχ.

We let G(M̂ a) be the Heisenberg group of the line bundle M̂ a → X̂, sitting in an exact

sequence

1→ C? → G(M̂ a)→ H(M̂ a)→ 1,

where the quotient is the abelian group

H(M̂a) = {y, t?yM̂a ' M̂a} ⊂ X̂.

For an introduction to Heisenberg group actions in the theory of abelian varieties we refer

the reader to [Mum66], for instance.

Importantly, by construction, the étale morphism

Ψ : K [a] ×X [b] × X̂ −→ X [a] ×X [b]

can be viewed precisely as quotienting by the abelian group H(M̂a). The latter acts on

K [a] × X̂ via

η · (IZ , y) = (t?ϕ
M̂

(η)IZ , y + η)

and trivially on X [b]. Thus, as a pullback of L[a] → X [a] under the quotienting map Ψ, the

line bundle

L[a] � M̂aχ → K [a] × X̂

is H(M̂a)-equivariant, in other words it is G(M̂a)-equivariant, such that the center acts with

weight 0. Independently, it is clear that the line bundle M̂aχ → X̂ is G(M̂ a)-equivariant,

the center acting with weight χ. It follows that

L[a] → K [a]
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is also G(M̂a)-equivariant, so that the center acts with weight −χ. The spaces of sections

H0(X̂, M̂aχ) and H0(K [a], L[a])

are in turn acted on with weights χ and −χ respectively, and furthermore, we can write

H0(X [a], L[a]) =
(
H0(X̂, M̂aχ)⊗H0(K [a], L[a])

)H(M̂a)

.

Taking into account the long-known isomorphism

D+
L : H0(X [a], L[a])∨ −→ H0(X [b], L[b])

of equation (3.3), we see that the dual of the linear map D̃L is the natural

D̃∨L :
(
H0(X̂, M̂aχ)⊗H0(K [a], L[a])

)H(M̂a)

⊗H0(X̂, M̂aχ)∨ −→ H0(K [a], L[a]),

which pairs the vector space H0(X̂, M̂aχ) and its dual. To conclude the proposition, we

show now that this map is surjective.

Let {Sα}α∈I denote the irreducible representations of G(M̂a) with the center acting with

weight −χ. Decomposing into irreducibles, we write

H0(K [a], L[a]) =
⊕
α

Sα ⊗ Cmα , H0(X̂, M̂aχ)∨ =
⊕
α

Sα ⊗ Cnα ,

and the duality map D̃∨L is

D̃∨L :

(⊕
α

(Cnα)∨ ⊗ Cmα

)⊗(⊕
β

Sβ ⊗ Cnβ

)
−→

⊕
α

Sα ⊗ Cmα ,

given explicitly by the natural pairing of the multiplicity spaces (Cnα)∨ and Cnα .

We conclude D̃∨L fails to be surjective only if there is an irreducible Sα which appears with

nonzero multiplicity mα 6= 0 in H0(K [a], L[a]), but fails to appear in H0(X̂, M̂aχ), so nα = 0.

This is precluded by the following result, which in level 2 is Proposition 3.7 in [Iye]. This

ends the proof of the proposition, and therefore of Theorem 4.
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Lemma 3.2.1. Let A be an abelian surface and M → A an ample line bundle. For any

integer k ≥ 0, all irreducible representations with central weight k of the Heisenberg group

G(M) appear in the G(M)-module H0(A, Mk) with nonzero multiplicity.

For the benefit of the reader, we give the quick argument, which we lifted from [Iye]. Consider

the natural homomorphism G(M)→ G(Mk) and write

K ∼= G(M)/µk

for its image. Fix S a representation of the Heisenberg group G(M) of weight k. Certainly,

S is a representation of K with weight 1. The induced representation

R = Ind
G(Mk)
K S

of the Heisenberg group G(Mk) has weight 1, hence it splits as a sum of copies of the unique

irreducible representation H0(A,Mk) of weight 1:

R = H0(A,Mk)⊕ . . .⊕H0(A,Mk).

We restrict this decomposition to G(M). By definition, the induced representation R must

contain a copy of S as a K-submodule, and therefore also as a G(M)-submodule. We conclude

that S must appear in the G(M)-module H0(A,Mk), as claimed.
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Chapter 4

Product abelian surfaces

This chapter appears in the paper [BMOY14] as Section 3.

Relying on the rank one case just established, Theorem 5 is derived by techniques developed

in [MO13] and [MO14a]. Specifically, we let

X = B × F → B

be a product of elliptic curves, which we view as an abelian surface elliptically fibered over

B. We write f for the class of the fiber over the origin, and σ for the zero section of the

fibration. As in [MO14a], stability of sheaves over X is with respect to a polarization

H = σ +Nf

for N large enough. This polarization is suitable in the sense of Friedman [Fri98]. Assuming

v and w are vectors with

c1(v) · f = c1(w) · f = 1,

we show that

D : H0(Kv,Θw)∨ → H0(Mw,Θv)

is an isomorphism.
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As in [MO14a], we use a fiberwise Fourier-Mukai transform

RS† : D(X)→ D(X)

to move from the rank 1 situation to higher rank Mukai vectors. The kernel of RS† is given

by the pullback of the normalized Poincaré sheaf

PF → F × F

to the product X×BX ∼= F×F×B. The Fourier-Mukai transform gives rise to two birational

isomorphisms

Kv 99K K [dv ]

and

Mw 99K X
[dw] × X̂

which are regular in codimension 1. Explicitly, for any E ∈ Kv and F ∈ Mw, away from

codimension two loci, Proposition 1 of [MO14a] in conjunction with Theorem 1.1 of [Bri97]

shows that

RS†(E∨) = IZ(rσ − χf)[−1], (4.1)

RS†(F ) = I∨W ⊗O(−r′σ + χ′f)⊗ y−1, (4.2)

for subschemes

Z ∈ K [dv ], W ∈ X [dw], and a line bundle y ∈ X̂.

Here, we wrote

r = rank (v), χ = χ(v), r′ = rank (w), χ′ = χ(w).

We set

L = O ((r + r′)σ − (χ+ χ′)f) =⇒ χ(L) = dv + dw.
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Now, the key to finishing the proof is the calculation:

H0(E ⊗L F ) = HomD(X)(E
∨, F ) = HomD(X)

(
RS†(E∨), RS†(F )

)
= Ext1(IZ ⊗ y ⊗ L, I∨W ) = Ext1(I∨W , IZ ⊗ y ⊗ L)∨

= H1(IW ⊗L IZ ⊗ y ⊗ L)∨.

On the locus (of codimension 2 complement) of non-overlapping (Z,W ), the last hyperco-

homology group coincides with the regular cohomology group,

H1(IW ⊗L IZ ⊗ y ⊗ L) = H1(IW ⊗ IZ ⊗ y ⊗ L).

Thus under the birational map

Kv ×Mw 99K K
[dv ] ×X [dw] × X̂,

the two theta divisors

Θ = {(E, F ) : H0(E ⊗L F ) 6= 0} ⊂ Kv ×Mw,

and

ΘL = {(IZ , IW , y) : H0(IZ ⊗ IW ⊗ y ⊗ L) 6= 0} ⊂ K [dv ] ×X [dw] × X̂

coincide, and the theta line bundles on each factor match up as well. Since in rank 1, ΘL

induces a strange duality isomorphism by Theorem 4, the same must be true about the

divisor Θ inducing the map

D : H0(Kv, Θw)∨ −→ H0(Mw, Θv).

This completes the proof.

Remark 4.0.1. The assumption that the rank is at least 3 is made in [MO14a] to justify that

equations (4.1) and (4.2) hold in codimension 1. This assumption is however not needed, as

we now show. The reader wishing to go on to the proof of generic strange duality contained

in the next section may choose to skip this argument.
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To begin, we note that identity (4.2) follows from (4.1) via Grothendieck duality. In turn,

equation (4.1) is a consequence of the fact that RS†(E∨)[1] is torsion free, cf. Proposition 1

in [MO14a]. We will explain that this assertion holds in codimension 1, in rank 2. To this

end, regard the kernel of RS†, namely the Poincaré sheaf

P → X ×B X,

as an object over X ×X via the diagonal embedding

X ×B X → X ×X.

We will prove

Lemma 4.0.2. For all sheaves E away from a codimension 2 locus in the moduli space, the

set

TE = {x ∈ X : Hom(E,P|X×{x}) 6= 0} ⊂ X

is finite.

Assuming the lemma, we show that for all E such that TE is a finite set, the transform

RS†(E∨)[1] is a torsion free sheaf. To see this, consider a locally free resolution

0→ V → W → E → 0 (4.3)

such that W = OX(−mH)⊕k for sufficiently large m. Then

Ext1(W,P|X×{x}) = Ext2(W,P|X×{x}) = 0,

for all x ∈ X. As a consequence, the sheaf

Ŵ := RS†(W∨)

is locally free. Next,

Ext2(E,P|X×{x}) = Hom(P|X×{x}, E)∨ = 0,
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using that E is torsion free and P|X×{x} is of rank 0. From the exact sequence induced by

the resolution (4.3), we conclude that

Ext1(V,P|X×{x}) = Ext2(V,P|X×{x}) = 0

for all x ∈ X. Therefore,

V̂ := RS†(V ∨)

is locally free as well. The same resolution also shows that we have an exact triangle

RS†(E∨)→ Ŵ → V̂ → RS†(E∨)[1]

which induces an exact sequence in cohomology sheaves

0→ H0(RS†(E∨))→ Ŵ
φ→ V̂ → H1(RS†(E∨))→ 0.

Note that φ|{x} is injective whenever x 6∈ TE. Then our assumption implies that φ is injective

as a morphism of sheaves. Furthermore, Coker φ is torsion free, as claimed.

Proof of Lemma 4.0.2. Consider the set

Σ = {E : there exists a fiber f such that E|f contains a subbundle of slope > 1}.

This set has codimension at least 2 in the moduli space by Lemma 5.4 of [BH14]. (A shift

by 1 in the slope is necessary to align with the numerical conventions of [BH14].) We will

assume that E is chosen outside Σ. Furthermore, we may assume that there is at most one

point of the surface where E fails to be locally free. This is always true in the moduli space

away from codimension 2.

We claim that in this situation TE consists of finitely many points. Indeed, let x ∈ TE. Three

cases need to be considered.

(a) First, we rely on the fact that the polarization is suitable. In this case, the restriction

of E to a generic fiber is stable. If x lies on such a generic fiber, then as a consequence
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of stability, we obtain the vanishing

Hom(E,P|X×{x}) = 0.

Therefore in this case x 6∈ TE.

(b) Assume now that x lies on a fiber f over which the restriction of E is locally free but

unstable. In this situation, E|f splits as

E|f = S0 ⊕ S1

where S0 is a degree zero line bundle over f , while S1 has degree 1. Any other splitting

type is not allowed by the definition of Σ. Now,

Hom(E,P|X×{x}) = Hom(S0,P|X×{x}) 6= 0 =⇒ S0 = P|X×{x}.

This shows that x must be the point corresponding to the line bundle S0. Since by (a),

there are only finitely many unstable fibers, we conclude that there are only finitely

many choices for x.

(c) Finally, we analyze the case when x lies on a fiber over which E is not locally free. Let

s be the unique point where E fails to be locally free, and let fs be the fiber through s.

Then

E|fs = Cs ⊕ F,

where F is a rank 2 degree 0 vector bundle over fs. If F is semistable, there exists an

extension

0→ S → F → S → 0

where S is a line bundle of degree 0 over fs. We have

Hom(E,P|X×{x}) = Hom(F,P|X×{x}) 6= 0 =⇒ Hom(S,P|X×{x}) 6= 0

=⇒ S = P|X×{x}.
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This proves that x is the point of the fiber through s corresponding to S.

To complete the argument, it suffices to show that the situation when F is not semistable

corresponds to a codimension 2 subset of the moduli space. To this end, consider the

codimension 1 locus Z of sheaves in the moduli space which fail to be locally free at

exactly one point. This is an irreducible subset. Indeed, any sheaf in Z sits in an exact

sequence

0→ E → E∨∨ → Cs → 0,

with M = E∨∨ stable locally free of Mukai vector

v∨∨ = v + (0, 0, 1).

Letting M denote the moduli space of such locally free sheaves, there exists a fibration

π : Z →M

whose fibers over M are Quot schemes of length 1 quotients q : M → Cs → 0. The

sheaf E is recovered uniquely as the kernel of the pair (M, q). Since the fibers of π are

irreducible of dimension 3, Z must be irreducible as well.

Now, for locally free sheaves M ∈ M, there are finitely many fibers for which M |f is

unstable. Consider

Z◦ ↪→ Z

the set of pairs (M, q : M → Cs → 0) where s does not lie on an unstable fiber. The

restriction of M |fs is the Atiyah bundle of rank 2 and degree 1. The kernel of q is a

torsion free sheaf E which is not locally free at s. In fact, we calculate

E|fs = Cs ⊕ F

where F is a subsheaf of degree 0 of the Atiyah bundle M |fs. Since M |fs is stable, all

its proper subbundles have slope ≤ 0. It follows that F is semistable. Thus, to get F ’s

58



which are not semistable, we need to select (M, q) from Z \ Z◦. Clearly,

Z \ Z◦ →M

has projective fibers of dimension 2. Thus, Z \Z◦ has codimension 1 in Z, as claimed.

This completes the proof of Lemma 4.0.2 and ends the remark.
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Chapter 5

Generic strange duality

This chapter appears in the paper [BMOY14] as Section 4.

The isomorphism we established for product abelian surfaces implies strange duality for

generic abelian surfaces. This is achieved via degeneration; see also Section 3 of [MO14b].

Specifically, we let A denote the moduli stack of pairs (X,H) with H2 = 2n, where H is a

primitive ample line bundle over X. Consider the universal family

π : (X ,H)→ A.

Fix integers χ, χ′ and ranks r, r′ ≥ 2. For each t ∈ A representing a polarized abelian surface

(Xt,Ht), consider two orthogonal Mukai vectors

vt = (r, c1(Ht), χ), wt = (r′, c1(Ht), χ
′).

We form the relative moduli spaces of Ht-semistable sheaves of type vt and wt

π : K[v]→ A, π : M[w]→ A.

The product

π : K[v]×AM[w]→ A

carries the relative Brill-Noether locus

Θ[v, w] = {(X,H,E, F ) : H0(X,E ⊗L F ) 6= 0}
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obtained as the vanishing of a section of the relative theta line bundle

Θ[w]�Θ[v]→ K[v]×AM[w].

Pushing forward to A via the natural projections π, we obtain the sheaves

V = π? (Θ[w]) , W = π? (Θ[v]) ,

as well as a section D of V⊗W. The constructions are explained in detail in [MO].

Crucial to the specialization procedure which yields generic strange duality is the statement

that V and W are generically vector bundles of equal rank

d2
v

dv + dw

(
dv + dw
dv

)
whose fibers are the spaces of generalized theta functions. This is established in Proposition

2 below. Assuming this result, we let A◦ ↪→ A denote the maximal open locus where the

generic rank is achieved. Consider also the Humbert locus

S ↪→ A

of split abelian surfaces

(X,H) = (B × F,LB � LF ),

for line bundles LB → B,LF → F of degrees 1 and n. Just as in Section 3 of [MO14b],

Theorem 5 can be rephrased as the statement that

S ↪→ A◦

and that furthermore

D : V∨ →W

is an isomorphism along S. To make the above claim, we need to exchange stability relative

to a suitable polarization required by Theorem 5 with stability relative to the polarization

H (which may lie on a wall). The next section, in particular Proposition 3, shows that the
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ensuing moduli spaces agree in codimension 1. We need to pass to the moduli stacks to

invoke the proposition, but the corresponding spaces of sections do not change, as explained

in Section 3 of [MO14b].

As a consequence, D is an isomorphism generically over A◦. Since the generic fibers of V

and W over A◦ are spaces of generalized theta functions, we conclude that generic strange

duality holds as in Theorem 6.

We now turn to Proposition 2 which was used in the argument above. A general local-

freeness statement for the Verlinde sheaves will be proven in Section 6, but in its context,

the proposition gives stronger positivity results with a simpler proof. We show

Proposition 2. Let X be an abelian surface of Picard rank 1, with H the generator of the

Néron-Severi group of X. Let

v = (r,H, χ), w = (r′, d′H,χ′)

be two orthogonal vectors of positive rank such that χ 6= 0, χ′ ≤ 0. Then, for any F ∈ Kw,

the line bundle

Θw := ΘF →Mv

is big and nef, hence without higher cohomology. If χ′ < 0, then the above line bundle is

ample. By restriction, the same results hold for Θw → Kv.

Proof. In the K3 case, reflections along rigid sheaves were used to conclude that Θw →Mv

is big and nef, hence without higher cohomology, cf. Proposition 4 of [MO14b]. Unlike K3

surfaces, abelian surfaces do not admit rigid sheaves. A different argument will be given.

The starting point is the following well-known result of Jun Li [Li93]. Specifically, setting

w0 = (0, rH,−2n),

the line bundle Θw0 →Mv is big and nef. We will moreover show that for the vector

w1 = (2n,−χH, 0),
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the line bundle Θw1 →Mv is also big and nef. Since for χ(w) ≤ 0, w is a linear combination

with non-negative coefficients of w0 and w1, the conclusion follows.

To prove the claim about w1, we consider two cases depending on the sign of χ(v). Let us

first assume that χ(v) < 0. By Proposition 3.5 of [Yos], the shifted Fourier-Mukai transform

Φ with kernel

P [1]→ X × X̂

induces an isomorphism of moduli spaces

Φ :Mv ' Mv̂ where v̂ = (−χ, Ĥ,−r) is a vector on X̂.

For ŵ = (0,−χĤ,−2n), the bundle

Θŵ → Mv̂

is big and nef, again by Jun Li’s result. To conclude, it remains to observe that

Φ?Θŵ = Θw1 ,

hence the latter line bundle is also big and nef.

When χ(v) > 0, the argument is similar. By Proposition 3.2 of [Yos], we have an isomorphism

Ψ :Mv ' Mv̂, v̂ = (χ, Ĥ, r)

induced by the composition of the Fourier-Mukai transform with kernel P with the dualiza-

tion. Under this isomorphism, Jun Li’s bundle Θŵ, where ŵ = (0, χĤ,−2n), corresponds to

Θw1 .

5.1 Variation of polarization for the moduli space of

Gieseker sheaves

This chapter appears in the paper [BMOY14] as Section 5.
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Let X be an arbitrary abelian surface, and fix a Mukai vector

v := (r, ξ, a) ∈ H∗(X,Z)

with r > 0. For an ample divisor H on X, denote by

M(v), MH(v)ss and MH(v)µ−ss

the stacks of all sheaves, of Gieseker H-semistable sheaves, and of slope H-semistable sheaves

respectively – all of type v.

We are concerned with moduli spaces of sheaves when Gieseker stability varies: we show that

they agree in codimension 1 each time a wall is crossed. This fact was used in the degeneration

argument of Section 5 to exchange the suitable polarization with the polarization determined

by the first Chern class.

First, for generic polarizations, the dimension of the moduli space is given by the following

Lemma 4.3.2 in [MYY11]:

Lemma 5.1.1. If H is general with respect to v, that is, H does not lie on a wall with respect

to v, then

dimMH(v)ss =


〈v, v〉+ 1, 〈v, v〉 > 0

〈v, v〉+ `, 〈v, v〉 = 0

, (5.1)

where ` = gcd(r, ξ, a).

For the purposes of Chapter 5, we also need to analyze the situation when the polarization

may lie on a wall. To this end, let H1 be an ample divisor on X which belongs to a wall

W with respect to v and H an ample divisor which belongs to an adjacent chamber. Then

Gieseker H-semistable sheaves are slope H1-semistable

MH(v)ss ↪→Mss
H1

(v) ↪→MH1(v)µ-ss.

All these stacks have dimension 〈v, v〉 + 1 by Lemma 3.8 of [KY08]. We estimate the codi-

mension of

MH1(v)ss \MH(v)ss.
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Specifically, we prove

Proposition 3. Assume that v is a Mukai vector of positive rank with the property that

there are no isotropic vectors u of positive rank such that 〈v, u〉 = 1 or 2. Then,

(〈v, v〉+ 1)− dim(MH1(v)ss \MH(v)ss) ≥ 2. (5.2)

Therefore, in this situation, MH(v)ss is independent of the choice of ample line bundle H

(generic or on a wall) away from codimension 2.

The same statement holds true for the moduli stack KH(v)ss of sheaves with fixed determinant

and fixed determinant of the Fourier-Mukai.

Proof. The proof is essentially contained in Proposition 4.3.4 of [MYY11], but since specific

aspects of the argument are used below, we give an outline for the benefit of the reader.

Let E be a Gieseker H1-semistable sheaf, which is however not Gieseker H-semistable. In

particular E is slope H1-semistable. Consider the Harder-Narasimhan filtration relative to

H

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E.

By definition, the reduced H-Hilbert polynomials of Fi/Fi−1 are strictly decreasing. In

particular, the H-slopes are decreasing as well. In turn, this implies

µH1(F1) ≥ µH1(F2/F1) ≥ . . . ≥ µH1(Fs/Fs−1),

and therefore

µH1(F1) ≥ µH1(F2) ≥ . . . ≥ µH1(Fs) = µH1(E).

Since E is slope H1-semistable, we must have equality throughout

µH1(F1) = µH1(F2) = . . . = µH1(E).

Equivalently, writing

v(Fi/Fi−1) = vi so that v =
s∑
i=1

vi,

65



we obtain

c1(vi) ·H1

rk vi
=
c1(v) ·H1

rk v
, 1 ≤ i ≤ s. (5.3)

Let FH(v1, v2, . . . , vs) be the stack of the Harder-Narashimhan filtrations

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E, E ∈M(v) (5.4)

such that the quotients Fi/Fi−1, 1 ≤ i ≤ s are semistable with respect to H and

v(Fi/Fi−1) = vi. (5.5)

Thus

MH1(v)µ-ss \MH(v)ss = ∪v1,...,vsFH(v1, v2, . . . , vs),

where (5.3) is satisfied. Then Lemma 5.3 in [KY08] implies

dimFH(v1, v2, . . . , vs) =
s∑
i=1

dimMH(vi)
ss +

∑
i<j

〈vi, vj〉. (5.6)

Write vi = `iv
′
i where v′i is a primitive Mukai vector. It is shown in Proposition 4.3.4 of

[MYY11] that for all i, j we have

〈v′i, v′j〉 ≥ 3

unless either v′i or v′j is isotropic, and in this case 〈v′i, v′j〉 ≥ 1. We estimate

(〈v, v〉+ 1) − dim(MH1(v)µ-ss \MH(v)ss)

= (〈v, v〉+ 1)−
∑
i<j

〈vi, vj〉 −
s∑
i=1

dimMH(vi)
ss

=
∑
i>j

〈vi, vj〉 −
s∑
i=1

(dimMH(vi)
ss − 〈vi, vi〉) + 1

≥
∑
i>j

`i`j〈v′i, v′j〉 −
s∑
i=1

`i + 1 ≥
∑
i>j

`i`j −
∑
i

`i + 1 ≥ 2.

Indeed, the above inequality is satisfied for s ≥ 4. The cases s = 2 and s = 3 need to be

considered separately. The detailed analysis is contained in Proposition 4.3.4 of [MYY11].

The only possible exceptions correspond to

66



- s = 2, `1 = 1, `2 = `, v′2 isotropic, 〈v′1, v′2〉 = 1;

- s = 2, `1 = 1, `2 = 1, v′1 isotropic, 〈v′1, v′2〉 = 2;

- s = 3, `1 = `2 = `3 = 1, v = v′1 + v′2 + v′3, v′i isotropic, 〈v′i, v′j〉 = 1.

In all cases, taking u = v′1, we obtain 〈v, u〉 = 1 or 2, which contradicts our assumption.

For the final claim about the moduli space KH(v)ss, we repeat the proof above. The only

modification is the dimension estimate (5.6) which follows by going over the argument in

[KY08].

Lemma 5.1.2. Assume that

〈v, v〉 > 4 rank (v).

Then no isotropic vector u of positive rank satisfying 〈v, u〉 = 1 or 2 occurs as Mukai vector

of a quotient in a Harder-Narasimhan filtration of a sheaf of type v. Therefore, the moduli

spaces

MH(v)ss and KH(v)ss

are independent of the polarization H in codimension 1.

Proof. Assume that there exists an isotropic vector u as above such that 〈v, u〉 = 1 or 2. In

this situation, we have

c1(u) ·H1

rk u
=
c1(v) ·H1

rk v
=⇒

(
c1(u)

rk u
− c1(v)

rkv

)
·H1 = 0.

Using the Hodge index theorem, we conclude that(
c1(u)

rk u
− c1(v)

rkv

)2

≤ 0.

By direct calculation, or via Lemma 1.1 of [KY08], we obtain

〈v, u〉 = −rk(v) · rk(u)

2

(
c1(u)

rk u
− c1(v)

rkv

)2

+
rk (u)

rk (v)
· 〈v, v〉

2
+

rk (v)

rk (u)
· 〈u, u〉

2

≥ rk (u)

rk (v)
· 〈v, v〉

2
> 2 rk (u) ≥ 2.

This contradiction completes the proof.
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Remark 5.1.3. The Lemma above applies to the particular situation of a product abelian

surface X = B × F considered in Section 5. We assume here that B,F are not isogenous,

so that the section σ and the fiber class f generate the Néron-Severi group. Then, for Mukai

vectors

v = (r, σ + nf, χ), w = (r′, σ + nf, χ′)

with χ, χ′ < 0 we obtain

〈v, v〉 = 2n− 2rχ > −2rχ ≥ 4r,

as required in order to apply the Lemma.

The only exception may be the case χ = −1 which will be treated separately. In this situation,

we claim that there are no walls between the polarizations

H = σ + nf, H ′ = σ +Nf,

where N is taken sufficiently large to ensure that H ′ is suitable. Indeed, assuming otherwise,

consider a wall defined by an isotropic Mukai vector u such that

〈v, u〉 = 1 or 2.

In fact, possibly doubling u, it suffices to analyze the case 〈v, u〉 = 2. Let

H0 = σ + kf, k ≥ n,

be an ample divisor on this wall, where k ∈ Q. By definition, the vector u appears as the

Mukai vector of a quotient in the Harder-Narasimhan filtration for H0. Setting u = (p, η, q)

with p > 0, we obtain from (5.3) that(
η

p
− H

r

)
·H0 = 0 =⇒ (rη − pH) ·H0 = 0.

Writing

rη − pH = aσ + bf,
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we calculate

(rη − pH) ·H0 = (aσ + bf) · (σ + kf) = 0 =⇒ b = −ak.

Consequently,

(rη − pH)2 = (aσ + bf)2 = 2ab = −2a2k ≤ −2k, (5.7)

unless a = b = 0. This particular situation can be analyzed by exactly the same methods;

we leave the verification to the reader. In any case, the conditions that u is isotropic and

〈v, u〉 = 2 translate into

η2 = 2pq, η ·H = −p+ qr + 2,

respectively. With this understood, we compute the left hand side of (5.7)

(rη − pH)2 = r2η2 + p2H2 − 2pr(η ·H) = 2np2 + 2pr(p− 2) ≥ 0 > −2k

with the only possible exception p = 1. In this case, the above calculation yields

(rη − pH)2 = 2n− 2r.

By orthogonality,

2n = −r′χ− rχ′ ≥ r + r′ > r

which implies

(rη − pH)2 = 2n− 2r > −2n ≥ −2k.

This contradicts (5.7), showing that there is no wall separating H from a suitable polarization.
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Chapter 6

The Verlinde sheaves are locally free

This chapter appears in the paper [BMOY14] as Section 6.

The goal of this section is to prove Theorem 7. We show that for any (X,H), the dimension

of the space of sections of the theta line bundles is given by the expected formula (2.2)

for a very general class of Mukai vectors. This holds even without knowing the vanishing of

higher cohomology. As a consequence, the Verlinde sheaves V and W used in the degeneration

argument of Section 5 are in fact locally free over the entire moduli space A of pairs (X,H).

The result should be compared to Proposition 2 of Section 5. The generic local-freeness

yielded by Proposition 2 was sufficient for proving our main Theorem 6. By contrast, The-

orem 4 gives global local-freeness in great generality, and will be useful for future strange

duality studies.

We split the theorem into two statements with proofs of different flavors. First, we show

Proposition 4. Let (X,H) be a polarized abelian surface. Assume that

v = (r, dH, χ), w = (r′, d′H,χ′)

are orthogonal primitive Mukai vectors of ranks r, r′ ≥ 2 such that

(i) d, d′ > 0;
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(ii) χ < 0, χ′ < 0.

Assume furthermore that if (d, χ) = (1,−1), then (X,H) is not a product of two elliptic

curves. We have

h0(Kv,Θw) = χ(Kv,Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
.

In the same context, the Proposition implies the requisite statement for the moduli space

Mv:

Proposition 5. In the setup of Proposition 4, for any representative F ∈ Kw we have

h0(Mv,ΘF ) = χ(Mv,ΘF ) =
d2
w

dv + dw

(
dv + dw
dv

)
.

6.1 Proof of Proposition 4.

We begin by explaining the strategy of the proof when Kv is smooth. The key point is

Lemma 6.1.1 below which shows that Θw → Kv is movable, hence (big and) nef on a smooth

birational model of Kv, cf. Theorem 7 of [HT09]. The birational models of Kv arise as

moduli spaces of Bridgeland stable objects. The dimension calculation is carried out on

the moduli space of Bridgeland stable objects, where the higher cohomology vanishes. The

Proposition follows since wall-crossings do not change the dimension of the space of sections.

The case when Kv may be singular requires first to desingularize the moduli space. The

above argument can then be repeated on a symplectic resolution.

Let us elaborate the discussion. As already remarked, the proof uses moduli spaces of

Bridgeland stable objects. Specifically, we consider stability conditions σ = σs,t = (Zs,t,As,t),

for t > 0, corresponding to central charges

Zs,t(E) = 〈exp((s+ it)H), v(E)〉.

The heart As,t has as objects certain 2-step complexes, and is obtained as a tilt of the abelian

category of coherent sheaves on X at a certain torsion pair; the exact definition will not be
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used below, but we refer the reader to [Bri08] for details. We form the moduli spacesMv(σ)

of σ-semistable objects of type v. The moduli space comes equipped with the Albanese map

a :Mv(σ)→ X × X̂,

and we write Kv(σ) for the Albanese fiber.

We begin by analyzing the case Kv smooth. The following observations (a)-(c) are useful for

the argument.

(a) In the large volume limit t >> 0, Bridgeland stability with respect to σs,∞ := σs,t

coincides with Gieseker stability, cf. [Bri08], Section 14.

The next remarks (b)-(c) are contained in the recent papers [MYY13] and [Yos12b]. For K3

surfaces, the similar statements are found in [BM14a].

(b) The space of stability conditions admits a wall and chamber decomposition, so that

the moduli spaces are constant in each chamber, but they undergo explicit birational

transformations as walls are crossed. These birational transformations are regular in

codimension 1.

For the next remark, observe that the theta map (2.1) gives an isomorphism

Θ : (v∨)⊥ → Pic(Kv(σ)),

in such a fashion that the Beauville-Bogomolov form on the right hand side corresponds to

the Mukai pairing on the left hand side. Two basic (real) cones of divisors are necessary for

our purposes. First, the positive cone

Pos(Kv(σ)) ↪→ Pic(Kv(σ))R

can be expressed via the Beauville-Bogomolov form

Pos(Kv(σ)) = {x : 〈x, x〉 > 0, 〈x,A〉 > 0 for a fixed ample divisor A over Kv(σ)}.

72



Second, the movable cone

Mov(Kv(σ)) ↪→ Pic(Kv(σ))R

is generated by divisors whose stable base locus has codimension 2 or higher. Positive

movable divisors are big and nef on some smooth birational models, cf. Theorem 7 of

[HT09]. In our context, we have the following result obtained via the study of the movable

cone in [MYY11]:

(c) A positive movable divisor

Mov(Kv(σs,∞)) ∩ Pos(Kv(σs,∞))

is identified, under the birational wall crossings of (b), with a big and nef divisor on a

smooth moduli space Kv(σs,t) of Bridgeland stable objects:

{Θw → Kv(σs,∞)} ←→ {Θw → Kv(σs,t)}.

(Note that the Mukai vector w labeling the theta line bundle may undergo Weyl re-

flections when crossing divisorial walls in (v∨)⊥. However, since there are no divisorial

walls within the movable chamber, w does not change in the present setting.)

The essential ingredient is then provided by the following

Lemma 6.1.1. For v and w as in Proposition 4, the line bundle Θw → Kv(σs,∞) belongs to

the positive movable cone.

As a consequence of remarks (a)-(c) and of the lemma, we note

h0(Kv(σs,∞),Θw) = h0(Kv(σs,t),Θw) = χ(Kv(σs,t),Θw).

By the same argument as for the usual Gieseker stability, as in Proposition 1 of [MO08a],

we further have

χ(Kv(σs,t),Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
.
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We conclude that

h0(Kv(σs,∞),Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
,

as claimed in Proposition 4.

Proof of Lemma 6.1.1. We begin by noting that Θw is positive in the Gieseker chamber.

Indeed,

〈Θw,Θw〉 = 〈w,w〉 > 0.

For the second inequality, an ample divisor on the moduli space Kv(σs,∞) is constructed in

[LP96]; see also Remark 8.1.12 of [HL97]. This divisor takes the form Θa for

a = (r, rmH,−2mnd− χ), where m >> 0.

Recalling that w = (r′, d′H,χ′), we have

〈Θw,Θa〉 = 〈w, a〉 = 2nm(d′r + dr′)− rχ′ + r′χ > 0,

as needed.

We will now show that for the vector

w1 = (2nd,−χH, 0)

the line bundle Θw1 belongs to the closure of the movable cone for the Gieseker chamber.

We will combine this with a well-known result of Jun Li [Li93]. For the vector

w0 = (0, rH,−2nd)

the associated theta line bundle

Θw0 → Kv(σs,∞)

is big and nef, so in particular it is in the closure of the movable cone. Notice now that the

vector w is a positive linear combination of w0 and w1,

w =
1

2nd
(−χ′w0 + r′w1) ,
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hence Θw is movable.

To prove the claim about w1, we will use the description of the movable cone given in

[MYY13] and [BM14a]. Specifically, we consider the hyperplanes in Pos(Kv(σs,∞)) given by

Θ((u∨)⊥ ∩ (v∨)⊥), 1 ≤ 〈v, u〉 ≤ 2, 〈u, u〉 = 0.

The movable cone is cut out by these hyperplanes. To prove that Θw1 and Θw0 belong to

the same chamber, it suffices to show that

〈w0, u
∨〉 ≥ 0 ⇐⇒ 〈w1, u

∨〉 ≥ 0,

whenever u is isotropic and 1 ≤ 〈v, u〉 ≤ 2. The first inequality above will in fact turn out

strict for rank 3 or higher.

We assume r > 2 first. Let us write u = (p, η, q) where

η2 = 2pq, p, q ∈ Z.

Changing u into −u, we may furthermore assume that p ≥ 0 and 〈v, u〉 = ±1,±2. Recalling

that v = (r, dH, χ), we calculate

〈v, u〉 = d(H · η)− pχ− qr = ±1 or ± 2. (6.1)

We compute

〈w0, u
∨〉 ≥ 0 ⇐⇒ −r(H · η) + 2ndp ≥ 0. (6.2)

Similarly,

〈w1, u
∨〉 ≥ 0 ⇐⇒ χ(H · η)− 2ndq ≥ 0. (6.3)

We therefore need to show that

−r(H · η) + 2ndp ≥ 0 ⇐⇒ χ(H · η)− 2ndq ≥ 0.

We consider first the case when p = 0. Then, replacing u by −u we may assume that

H · η ≥ 0. In fact, H · η = 0 is impossible by (6.1) since r > 2. Therefore, H · η > 0. In this
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situation, (6.2) is false. We argue that (6.3) is false as well. Assuming otherwise, we have

χ(H · η) ≥ 2ndq =⇒ q < 0.

This is however incompatible with (6.1) which reads

d(H · η) + r(−q) = ±1,±2,

which is impossible for r > 2.

The crux of the argument is the case p > 0. In this situation, we distinguish the following

subcases:

(i) Assume H · η = 0. By the Hodge index theorem η2 ≤ 0 hence

pq =
η2

2
≤ 0 =⇒ q ≤ 0.

This shows that both (6.2) and (6.3) are true at the same time.

(ii) Assume H · η < 0. In this case, (6.2) is true. We prove that (6.3) is true as well.

Assuming otherwise, we obtain that

χ(H · η)− 2ndq < 0.

In particular q > 0 and multiplying by p > 0 we see that

pχ

2nd
(H · η) < pq =

η2

2
.

By the Hodge index theorem, we have

η2 ≤ (H · η)2

2n
.

The above inequality becomes

pχ

2nd
(H · η) <

(H · η)2

4n
=⇒ (H · η) <

2pχ

d
.

We obtain therefore

d(H · η)− pχ− qr < 2pχ− pχ− qr = pχ− qr < −2,

using χ < 0 and q > 0. This contradicts (6.1). Thus (6.3) must be true as well.
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(iii) Assume H · η > 0. Equation (6.1) implies that q ≥ 0. In this case, the inequality (6.3)

is false. We argue that (6.2) is false as well. Assume otherwise, so that

r(H · η) ≤ 2ndp =⇒ rq

2nd
(H · η) ≤ pq =

η2

2
.

Again by the Hodge index theorem, we have

η2 ≤ (H · η)2

2n

yielding

rq

2nd
(H · η) ≤ pq =

η2

2
≤ (H · η)2

4n
=⇒ 2rq ≤ d(H · η).

We obtain

d(H · η)− pχ− rq ≥ 2rq − pχ− rq = rq − pχ > 2

if q > 0, contradicting (6.1). When q = 0, equation (6.1) yields

d(H · η)− pχ = ±1,±2,

which implies d(H · η) = 1, pχ = −1. Therefore (d, χ) = (1,−1) and H · η = 1, η2 = 0.

In this case, (X,H) is a product of elliptic curves, which is not allowed.1

When r = 2, the same argument goes through with the only exception corresponding to the

case

p = 0, H · η = 0.

Since η2 = 2pq = 0 we obtain η = 0 by the Hodge index theorem. This yields the isotropic

vector u = (0, 0, 1). In fact, w0 lies on the wall determined by u, hence we cannot pin down

1To see that X is a product, write τ = H − n · η. Therefore,

η2 = τ2 = 0, η · τ = 1.

In this situation, η and τ are represented by two elliptic curves E and F , cf. Proposition 2.3 in [Kan94].
The sum morphism

s : E × F → X

must be an isogeny. The preimage of the origin corresponds to the intersection E ∩ F , hence s must be an
isomorphism.
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on which side of the wall w1 lies. To remedy this problem, we replace w0 by the vector

a = (r, rmH,−2mnd− χ) = mw0 + (r, 0,−χ)

which we have already seen to give an ample theta bundle for m >> 0. For the vector

u = (0, 0, 1), direct computation shows

〈a, u〉 < 0, 〈w1, u〉 < 0,

hence w1 and a are also on the same side of the wall determined by u.

This completes the analysis, and therefore the proof when Kv is smooth.

However, Kv may be singular when the polarization H is not generic. In this situation, for

any β ∈ NS(X)Q, we consider the moduli space of β-twisted H-semistable sheaves. Recall

that a sheaf E is β-twisted H-semistable provided that

(i) for all subsheaves F ⊂ E, we have

c1(F ) ·H
rk(F )

≤ c1(E) ·H
rk(E)

;

(ii) if equality holds in (i), then

χ(F )− c1(F ) · β
rk(F )

≤ χ(E)− c1(E) · β
rk(E)

.

We form the moduli space Kβ(v) of β-twisted H-semistable sheaves. In fact, remark (a)

above applies here as well, and consequently, Kβ(v) can be viewed as a moduli space of

Bridgeland’s stable objects. In addition, if β is appropriately chosen, then the moduli space

Kβ(v) consists of stable sheaves only, and therefore is a smooth non-empty holomorphic

symplectic manifold; see for instance Lemma 5.4 of [Abe00]. Furthermore, Lemma 5.5 in

[Abe00] shows that there is a surjective morphism

π : Kβ(v)→ Kv,
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which is therefore a symplectic resolution. As a consequence of Proposition 1.3 of [Bea00]

we have

Rπ?OKβ(v) = OKv .

Now, as the moduli space Kβ(v) consists of stable sheaves only, it carries a theta line bundle

Θw. Furthermore, the line bundle Θw descends to the singular moduli space Kv, which may

contain strictly semistables. This is a consequence of Kempf’s lemma and is shown to hold

true in Theorem 8.1.5 of [HL97]. The essential point is that c1(v) = dH is a multiple of the

polarization. As a corollary,

H0(Kv,Θw) = H0(Kβ(v), π?Θw) = H0(Kβ(v),Θw).

We claim that Θw is movable over the smooth moduli space Kβ(v). In fact, the argument we

presented in the untwisted case carries over to the twisted situation. An essential ingredient

of the proof is that Jun Li’s line bundle is big and nef. This continues to hold over Kβ(v)

by pullback, at least for β chosen as above. Alternatively, ample divisors are constructed in

Lemma 5.5.2 of [MYY13]. Since Θw is movable, we conclude that

h0(Kβ(v),Θw) = χ(Kβ(v),Θw) =
d2
v

dv + dw

(
dv + dw
dv

)
,

as claimed. This completes the proof.

Remark 6.1.2. The argument above also remains valid in ranks 0 and 1. Consequently, the

dimension calculation of Proposition 4 holds true for all primitive orthogonal Mukai vectors

v = (r, dH, χ), w = (r′, d′H,χ′) with r, r′ ≥ 0, d, d′ > 0, χ, χ′ < 0,

with the extra assumption that

- (X,H) is not a product when (d, χ) = (1,−1) or when (r, d) = (1, 1).
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6.2 Proof of Proposition 5.

To prove the Proposition, we use the diagram

Kv ×X × X̂
Φv //

p
��

Mv

a
��

X × X̂ Ψv // X × X̂

.

Here, Φv : Kv ×X × X̂ →Mv is defined as

Φv(E, x, y) = t?xE ⊗ y,

and

a :Mv → X × X̂

is the Albanese map. Both Φv and Ψv are étale of degree d4
v [Yos], [MO08a]. In fact, it is

proved in [Yos] that

Ψv(x, y) = (−χx− dϕĤ(y), dϕH(x) + ry),

where as usual

Ĥ → X̂

is the inverse determinant of the Fourier-Mukai transform of H, and ϕH , ϕĤ denote the

Mumford homomorphisms. This explicit expression will however not be needed below.

Fix F ∈ Kw. We have

Φ?
vΘF = Θw � L

for a line bundle L → X × X̂. It is shown in Proposition 4 of [MO08a] that

χ(L) = d2
vd

2
w.

In fact, by Lemma 1 in [Opr11], up to numerical equivalence we have

L = Ha � Ĥb ⊗ Pc, (6.4)
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where P → X × X̂ is the Poincaré bundle, and

a = −(χd′ + χ′d), b = rd′ + r′d, c = dd′n+ r′χ = −dd′n− rχ′.

In consequence of the assumptions χ, χ′ < 0 and d, d′ > 0, and also of the calculation

abn− c2 = dvdw > 0,

we obtain the inequalities

a > 0, b > 0, abn > c2.

These inequalities ensure that the line bundle L is ample. To see this, we use the special form

of the Nakai-Moishezon criterion for ampleness in the context of abelian varieties, as stated

on page 77 of [BL04]. Specifically, for abelian varieties, the criterion asserts that it is enough

to check ampleness numerically on hyperplanes and intersections of hyperplanes under any

fixed projective embedding, such as the one induced by H + Ĥ. A direct calculation then

shows that a line bundle L → X × X̂ of the form (6.4) is ample if and only if the three

inequalities above are satisfied. In consequence, L has no higher cohomology.

With this understood, we write with the aid of Proposition 4

h0(Kv ×X × X̂,Θw � L) = h0(Kv,Θw)h0(X × X̂,L) = χ(Kv,Θw)χ(X × X̂,L) (6.5)

=
d2
v

dv + dw

(
dv + dw
dv

)
· (dvdw)2.

On the other hand,

h0(Kv ×X × X̂,Φ?
vΘF ) = h0(Mv, (Φv)?Φ

?
vΘF ) =

∑
τ

h0(Mv,ΘF ⊗ a?Lτ ) (6.6)

where

(Ψv)?O =
⊕
τ

Lτ ,

over X × X̂. The line bundles Lτ appearing in the decomposition above are indexed by the

characters τ ∈ Ĝv of the group

Gv = Ker Ψv.

We claim that

81



Lemma 6.2.1. For each character τ of Gv, there exists an automorphism fτ : Mv → Mv

such that

ΘF ⊗ a?Lτ = f ?τ ΘF .

By the lemma, we therefore have

h0(Mv,ΘF ⊗ a?Lτ ) = h0(Mv,ΘF )

hence by (6.6) we obtain

h0(Kv ×X × X̂,Φ?
vΘF ) = deg Ψv · h0(Mv,ΘF ) = d4

v · h0(Mv,ΘF ).

This implies via (6.5) that

h0(Mv,ΘF ) =
d2
w

dv + dw

(
dv + dw
dv

)
,

establishing Proposition 5.

Proof of Lemma 6.2.1. We consider the group

K(L) ↪→ X × X̂

of pairs (x, y) leaving L invariant by translation

t?(x,y)L ' L.

The group K(L) has χ(L)2 = (dvdw)4 elements.

For each pair (x, y) ∈ K(L), we define the automorphism

f(x,y) :Mv →Mv

given by

f(x,y)(E) = t?xE ⊗ y.

We show that for (x, y) ∈ K(L) we can find a line bundle Lτ ∈ Ĝv such that

f ?(x,y)ΘF = ΘF ⊗ a?Lτ . (6.7)
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Indeed, the two lines bundles f ?(x,y)ΘF and ΘF both restrict to Θw on each fiber of the

Albanese map a, hence for some line bundle L→ X × X̂ we have

f ?(x,y)ΘF = ΘF ⊗ a?L.

It remains to explain that

Ψ?
v L = O,

or equivalently that

Φ?
vf

?
(x,y)ΘF = Φ?

vΘF .

Direct calculation shows that over Kv ×X × X̂ we have

f(x,y) ◦ Φv = Φv ◦ (1, t(x,y)).

Therefore

Φ?
vf

?
(x,y)ΘF = (1, t(x,y))

?Φ?
vΘF = (1, t(x,y))

?(Θw � L)

= Θw � t
?
(x,y)L = Θw � L = Φ?

vΘF .

As a consequence of (6.7), there exists a group homomorphism

α : K(L)→ Ĝv.

To complete the proof of the Lemma, we argue that α is surjective. Since

order K(L) = (dvdw)4, orderGv = d4
v

it suffices to prove that

order Ker α = d4
w.

In fact, we claim that

Ker α ' Gw, (6.8)

where Gw is the kernel of the morphism Ψw in the diagram
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Kw ×X × X̂
Φw //

p
��

Mw

a
��

X × X̂ Ψw // X × X̂

.

Here, Φw : Kw ×X × X̂ →Mw is defined as

Φw(G, x, y) = t?−xG⊗ y,

and

a :Mw → X × X̂

is the Albanese map

a(G) = (det Ĝ⊗ Ĥd′ , detG⊗H−d′).

Furthermore, just as above, Φw and Ψw both have degree d4
w. To prove (6.8), note that

(x, y) ∈ Ker α ⇐⇒ f ?(x, y)ΘF = ΘF ⇐⇒ Θt?−xF⊗y = ΘF .

By [MO08a], the last equality happens if and only if

det(t?−xF ⊗ y) = detF and det ̂(t?−xF ⊗ y) = det F̂

⇐⇒ (a ◦ Φw)(F, x, y) = 0 ⇐⇒ Ψw(x, y) = 0 ⇐⇒ (x, y) ∈ Gw,

as claimed. The proof of the lemma is completed.
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Part II

Part II: Nef cones of Hilbert schemes

of points on surfaces
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The content of Part II is the content of the paper [BHL+15].
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Chapter 7

Motivation and setup

If X is a projective variety, the cone Amp(X) ⊂ N1(X) of ample divisors controls the various

projective embeddings of X. It is one of the most important invariants of X, and carries

detailed information about the geometry of X. Its closure is the nef cone Nef(X), which is

dual to the Mori cone of curves (see for example [Laz04]). In this paper, we will study the

nef cone of the Hilbert scheme of points X [n], where X is a smooth projective surface over

C.

Nef divisors on Hilbert schemes of points on surfaces X [n] are sometimes easy to construct

by classical methods. If L is an (n− 1)-very ample line bundle on X, then for any Z ∈ X [n]

we have an inclusion H0(L ⊗ IZ) → H0(L) which defines a morphism from X [n] to the

Grassmannian G(h0(L)− n, h0(L)). The pullback of an ample divisor on the Grassmannian

is nef on X [n]. It is frequently possible to construct extremal nef divisors by this method.

For example, this method completely computes the nef cone of X [n] when X is a del Pezzo

surface of degree ≥ 2 or a Hirzebruch surface (see [ABCH12], [BC13]). Unfortunately, this

approach to computing the nef cone is insufficient in general. At the very least, to study

nef cones of more interesting surfaces it would be necessary to study an analog of k-very

ampleness for higher rank vector bundles, which is considerably more challenging than line

bundles.
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More recently, many nef cones have been computed by making use of Bridgeland stability

conditions and the Positivity Lemma of Bayer and Macr̀ı (see [Bri07], [Bri08], [AB13], and

[BM14b] for background on these topics, which will be reviewed in Section 8). Let v =

ch(IZ) ∈ K0(X), where Z ∈ X [n]. In the stability manifold Stab(X) for X there is an open

Gieseker chamber C such that if σ ∈ C then Mσ(v) ∼= X [n], where Mσ(v) is the moduli

space of σ-semistable objects with invariants v. The Positivity Lemma associates to any

σ ∈ C a nef divisor on X [n]. Stability conditions in the boundary ∂C frequently give rise to

extremal nef divisors. The Positivity Lemma also classifies the curves orthogonal to a nef

divisor constructed in this way, and so gives a tool for checking extremality.

The stability manifold is rather large in general, so computation of the full Gieseker chamber

can be unwieldy. We deal with this problem by focusing on a small slice of the stability

manifold parameterized by a half-plane. Up to scale, the corresponding divisors in N1(X)

form an affine ray. The nef cone Nef(X [n]) is spanned by a codimension 1 subcone identified

with Nef(X) and other more interesting classes which are positive on curves contracted

by the Hilbert–Chow morphism. Since Nef(X [n]) is convex, we can study Nef(X [n]) by

looking at positivity properties of divisors along rays in N1(X) starting from a class in

Amp(X) ⊂ Nef(X [n]). The Positivity Lemma gives us an effective criterion for testing when

divisors along the ray are nef.

The slices of the stability manifold that we consider are given by a pair of divisors (H,D)

on X with H ample and −D effective. The following is a weak version of one of our main

theorems.

Theorem 8. Let X be a smooth projective surface. If n � 0, then there is an extremal

nef divisor on X [n] coming from the (H,D)-slice. It can be explicitly computed if both the

intersection pairing on Pic(X) and the set of effective classes in Pic(X) are known. An

orthogonal curve class is given by n points moving in a g1
n on a curve of a particular class.

See Section 9 for more explicit statements, especially Corollary 3 and Theorem 15. Stronger
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statements can also be shown under strong assumptions on Pic(X); for example, we study

the Picard rank one case in detail in Section 10. Recall that if X is surface of irregularity

q := H1(OX) = 0 then N1(X [n]) is spanned by the divisor B of nonreduced schemes and

divisors L[n] induced by divisors L ∈ Pic(X); see Section 8.1 for details.

Theorem 9. Let X be a smooth projective surface with PicX ∼= ZH, where H is an ample

divisor. Let a > 0 be the smallest integer such that aH is effective. If

n ≥ max{a2H2, pa(aH) + 1},

then Nef(X [n]) is spanned by the divisor H [n] and the divisor

1

2
K

[n]
X +

(a
2

+
n

aH2

)
H [n] − 1

2
B. (∗)

An orthogonal curve class is given by letting n points move in a g1
n on a curve in X of class

aH.

Note that in the Picard rank 1 case the divisor class (∗) is frequently of the form λH [n]− 1
2
B

for a non-integer number λ ∈ Q. Any divisor constructed from an (n − 1)-very ample line

bundle will be of the form λH [n] − 1
2
B with λ ∈ Z, so in general the edge of the nef cone

cannot be obtained from line bundles in this way.

The required lower bound on n in Theorem 9 can be improved in specific examples where

special linear series on hyperplane sections are better understood.

Theorem 10. Let X be one of the following surfaces:

1. a very general hypersurface in P3 of degree d ≥ 4, or

2. a very general degree d cyclic branched cover of P2 of general type.

In either case, Pic(X) ∼= ZH with H effective. Suppose n ≥ d−1 in the first case, and n ≥ d

in the second case. Then Nef(X [n]) is spanned by H [n] and the divisor class (∗) with a = 1.
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Finally, in Section 11 we compute the nef cone of X [n] where X is a smooth del Pezzo surface

of degree 1 and n ≥ 2 is arbitrary. This computation was an open problem posed by Bertram

and Coskun in [BC13]; they noted that the method of k-very ample line bundles would not be

sufficient to prove the expected answer. Since X has Picard rank 9, this computation makes

full use of the general methods developed in Section 9. If C ⊂ X is a reduced, irreducible

curve which admits a g1
n, we write C[n] for the curve in the Hilbert scheme X [n] given by

letting n points move in a g1
n on C.

Theorem 11. Let X be a smooth del Pezzo surface of degree 1. The Mori cone of curves

NE(X [n]) is spanned by the 240 classes E[n] given by (−1)-curves E ⊂ X, the class of a

curve contracted by the Hilbert–Chow morphism, and the class F[n], where F ∈ |−KX | is an

anticanonical curve. The nef cone is determined by duality.

Many previous authors have used Bridgeland stability conditions to study nef cones and wall-

crossing for Hilbert schemes X [n] and moduli spaces of sheaves MH(v) for various classes of

surfaces. For instance, the program was studied for P2 in [ABCH12], [CH14a], [BMW14],

and [LZ13], for Hirzebruch and del Pezzo surfaces in [BC13], abelian surfaces in [YY14] and

[MM13], K3 surfaces in [BM14b], [?] and [HT10], and Enriques surfaces in [Nue14b]. Our

results unify several of these approaches. Additionally, nef cones were classically studied in

the context of k-very ample line bundles in papers such as [?], [BS91], [BFS89], and [CG90].
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Chapter 8

Preliminaries

Throughout the paper, we let X be a smooth projective surface over C.

8.1 Divisors and curves on X [n]

For simplicity we assume that X has irregularity q = h1(OX) = 0 in this subsection. By

work of Fogarty [Fog68], the Hilbert scheme X [n] is a smooth projective variety of dimension

2n which resolves the singularities in the symmetric product X(n) via the Hilbert–Chow

morphism X [n] → X(n). A line bundle L on X induces the Sn-equivariant line bundle L�n

on Xn which descends to a line bundle L(n) on the symmetric product X(n). The pullback

of L(n) by the Hilbert–Chow morphism X [n] → X(n) defines a line bundle on X [n] which we

will denote by L[n]. Intuitively, if L ∼= OX(D) for a reduced effective divisor D ⊂ X, then

L[n] can be represented by the divisor D[n] of schemes Z ⊂ X which meet D.

Fogarty shows that

Pic(X [n]) ∼= Pic(X)⊕ Z(B/2),

where Pic(X) ⊂ Pic(X [n]) is embedded by L 7→ L[n] and B is the locus of non-reduced

schemes, i.e., the exceptional divisor of the Hilbert–Chow morphism [Fog73]. Tensoring by

the real numbers, the Neron–Severi space N1(X [n]) is therefore spanned by N1(X) and B.
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There are also curve classes in X [n] induced by curves in X. Two different constructions are

immediate. Let C ⊂ X be a reduced and irreducible curve.

1. There is a curve C̃[n] in X [n] given by fixing n − 1 general points of X and letting an

nth point move along C.

2. If C admits a g1
n, i.e., a degree n map to P1, then the fibers of C → P1 give a rational

curve P1 → X [n]. We write C[n] for this class.

These constructions preserve intersection numbers, in the sense that if D ⊂ X is a divisor

and C ⊂ X is a curve then

D[n] · C̃[n] = D[n] · C[n] = D · C.

Part of the nef cone Nef(X [n]) is easily described in terms of the nef cone of X. If D is an

ample divisor, then D(n) is ample so D[n] is nef. In the limit, we find that if D is nef then

D[n] is nef. Conversely, if D is not nef then there is an irreducible curve C with D · C < 0,

so D[n] · C̃[n] < 0 and D[n] is not nef. Under the Fogarty isomorphism,

Nef(X [n]) ∩N1(X) = Nef(X).

The hyperplane N1(X) ⊂ N1(X [n]) is orthogonal to any curve contracted by the Hilbert–

Chow morphism, so all the divisors in Nef(X) ⊂ Nef(X [n]) are extremal. Since B is the

exceptional locus of the Hilbert–Chow morphism, we see that any nef class must have non-

positive coefficient of B. After scaling, then, we see that computation of the cone Nef(X [n])

reduces to describing the nef classes of the form L[n]− 1
2
B lying outside Nef(X) ⊂ Nef(X [n]).

8.2 Bridgeland stability conditions

We now recall some basic definitions and properties of Bridgeland stability conditions. We

fix a polarization H ∈ Pic(X)R. For any divisor D ∈ Pic(X)R the twisted Chern character
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chD = e−Dch can be expanded as

chD0 = ch0,

chD1 = ch1 −Dch0,

chD2 = ch2 −D · ch1 +
D2

2
ch0.

Recall that a Bridgeland stability condition is a pair σ = (Z,A) where Z : K0(X) → C

is an additive homomorphism and A ⊂ Db(X) is the heart of a bounded t-structure. In

particular, A is an abelian category. Moreover, Z maps any non trivial object in A to the

upper half plane or the negative real line. The σ-slope function is defined by

νσ = −<Z
=Z

,

and σ-(semi)stability of objects of A is defined in terms of this slope function. More technical

requirements are the existence of Harder–Narasimhan filtrations and the support property.

We recommend Bridgeland’s article [Bri07] for a more precise definition. The support prop-

erty is well explained in Appendix A of [BMS14].

In the case of surfaces, Bridgeland [Bri08] and Arcara–Bertram [AB13] showed how to con-

struct Bridgeland stability conditions in a slice corresponding to a choice of an ample divisor

H ∈ Pic(X)R and arbitrary twisting divisor D ∈ Pic(X)R. The classical Mumford slope

function for twisted Chern characters is defined by

µH,D =
H · chD1
H2chD0

,

where torsion sheaves are interpreted as having positive infinite slope. Given a real number

β ∈ R there are two categories defined as

Tβ = {E ∈ Coh(X) : any quotient E � G satisfies µH,D(G) > β},

Fβ = {E ∈ Coh(X) : any subsheaf F ↪→ E satisfies µH,D(F ) ≤ β}.
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A new heart of a bounded t-structure is defined as the extension closure Aβ := 〈Fβ[1], Tβ〉.

We fix an additional positive real number α and define the homomorphism as

Zβ,α = −chD+βH
2 +

α2H2

2
chD+βH

0 + iH · chD+βH
1 .

The pair σβ,α := (Zβ,α,Aβ) is then a Bridgeland stability condition. The (H,D)-slice of sta-

bility conditions is the family of stability conditions {σβ,α : β, α ∈ R, α > 0} parameterized

by the (β, α) upper half plane.

Definition 8.2.1. Fix a set of invariants v ∈ K0(X).

1. Let w ∈ K0(X) be a vector such that v and w do not have the same σβ,α-slope

everywhere in the (H,D)-slice. The numerical wall for v given by w is the set of

points (β, α) where v and w have the same σβ,α-slope.

2. A numerical wall for v given by a vector w as above is a wall (or actual wall) if there is

a point (β, α) on the wall and an exact sequence 0→ F → E → G→ 0 in Aβ, where

chF = w, chE = v, and F,E,G are σβ,α-semistable objects (of the same σβ,α-slope).

We write Knum(X) for the numerical Grothendieck group of classes in K0(X) modulo nu-

merical equivalence. Note that numerical walls for v ∈ K0(X) only depend on the numerical

class of v, while actual walls a priori depend on c1(v) ∈ Pic(X). The structure of walls in

a slice is heavily restricted by Bertram’s Nested Wall Theorem. This was first observed for

Picard rank one with D = 0, but the proof immediately generalizes by replacing ch by chD

everywhere.

Theorem 12 ([Mac14]). Let v ∈ K0(X).

1. Numerical walls for v can either be semicircles with center on the β-axis or the unique

vertical line given by β = µH,D(v). Moreover, the apex of each semicircle lies on the

hyperbola <Zβ,α(v) = 0.
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2. Numerical walls for v are disjoint, and the semicircular walls on either side of the

vertical wall are nested.

3. If W1 and W2 are two semicircular numerical walls left of the vertical wall with centers

(sW1 , 0) and (sW2 , 0), then W2 is nested inside W1 if and only if sW1 < sW2.

4. Suppose 0 → F → E → G → 0 is an exact sequence destabilizing an object E with

ch(E) = v at a point (β, α) on a numerical wall W , in the sense that all three objects

have the same σβ,α-slope and this is an exact sequence in Aβ. Then it is an exact

sequence of objects in Aβ′ with the same σβ′,α′-slope for all (β′, α′) ∈ W . That is, E is

destabilized along the entire wall.

8.3 Slope and discriminant

The explicit geometry of walls is frequently best understood in terms of slopes and discrim-

inants; the formulas presented here previously appeared in [CH14b] in the context of P2.

When the rank is nonzero, we define

∆H,D =
1

2
µ2
H,D −

chD2
H2chD0

.

The Bogomolov inequality gives ∆H,D(E) ≥ 0 whenever E is an (H,D)-twisted Giesker

semistable sheaf. Observe that ∆H,D+βH = ∆H,D for every β ∈ R. A straightforward calcu-

lation shows that for vectors of nonzero rank the slope function for the stability condition

σβ,α in the (H,D)-slice is given by

νσβ,α =
(µH,D − β)2 − α2 − 2∆H,D

(µH,D − β)
(8.1)

Suppose v,w are two classes with positive rank, and let their slopes and discriminants be

µH,D,∆H,D and µ′H,D,∆
′
H,D, respectively. The numerical wall W in the (H,D)-slice where v

and w have the same slope is computed as follows.
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• If µH,D = µ′H,D and ∆H,D = ∆′H,D, then v and w have the same slope everywhere in

the slice, so there is no numerical wall.

• If µH,D = µ′H,D and ∆H,D 6= ∆′H,D, then W is the vertical wall β = µH,D.

• If µH,D 6= µ′H,D, then Equation (8.1) implies W is the semicircle with center (sW , 0)

and radius ρW , where

sW =
1

2
(µH,D + µ′H,D)−

∆H,D −∆′H,D
µH,D − µ′H,D

, (8.2)

ρ2
W = (sW − µH,D)2 − 2∆H,D (8.3)

provided that the expression defining ρ2
W is positive; if it is negative then the wall is

empty.

Notice that if ∆H,B(v) ≥ 0 then numerical walls for v left of the vertical wall accumulate at

the point (
µH,D(v)−

√
2∆H,D(v), 0

)
(8.4)

as their radii go to 0.

8.4 Nef divisors and the Positivity Lemma

In this section, we describe the Positivity Lemma of Bayer and Macr̀ı. Let σ = (Z,A) be a

stability condition on X, v ∈ Knum(X) and S a proper algebraic space of finite type over C.

Let E ∈ Db(X × S) be a flat family of σ-semistable objects of class v, i.e., for every C-point

p ∈ S, the derived restriction E|π−1
S ({p}) is σ-semistable of class v. Then Bayer and Macr̀ı

define a numerical divisor class Dσ,E ∈ N1(S) on the space S by assigning its intersection

with any projective integral curve C ⊂ S:

Dσ,E · C = =
(
−Z((pX)∗E|C×X)

Z(v)

)
.
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The Positivity Lemma shows that this divisor inherits positivity properties from the ho-

momorphism Z, and classifies the curve classes orthogonal to the divisor. Recall that two

σ-semistable objects are S-equivalent with respect to σ if their sets of Jordan–Hölder factors

are the same.

Theorem 13 (Positivity Lemma, [BM14b, Lemma 3.3]). The divisor Dσ,E ∈ N1(S) is nef.

Moreover, if C ⊂ S is a projective integral curve then Dσ,E ·C = 0 if and only if two general

objects parameterized by C are S-equivalent with respect to σ.

Our primary use of the Positivity Lemma is to attempt to construct extremal nef divisors

on Hilbert schemes of points. Thus it is important to recover Hilbert schemes of points

as Bridgeland moduli spaces. Recall that a torsion-free coherent sheaf E is (H,D)-twisted

Gieseker semistable if for every F ⊂ E we have

χ(F ⊗OX(mH −D))

rk(F )
≤ χ(E ⊗OX(mH −D))

rk(E)

for all m � 0, where the Euler characteristic is computed formally via Riemann–Roch;

see [MW97]. For any class v ∈ K0(X), there are projective moduli spaces MH,D(v) of

S-equivalence classes of (H,D)-twisted Gieseker semistable sheaves with class v. If v =

(1, 0,−n) is the Chern character of an ideal sheaf of n points then MH,D(v) = X [n]. Note

that if the irregularity of X is nonzero, then it is crucial to fix the determinant.

Fix an (H,D)-slice in the stability manifold, and fix a vector v ∈ K0(X) with positive rank.

If β lies to the left of the vertical wall β = µH,D(v) for v, then for α � 0 the moduli space

coincides with a twisted Gieseker moduli space.

Proposition 6 (The large volume limit [Bri08, Mac14]). Fix divisors (H,D) giving a slice

in Stab(X). Let v ∈ K0(X) be a vector with positive rank, and let β ∈ R be such that

µH,D(v) > β. If E ∈ Aβ has ch(E) = v then E is σβ,α-semistable for all α� 0 if and only

if E is an (H,D − 1
2
KX)-twisted Gieseker semistable sheaf.
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Moreover, in the quadrant of the (H,D)-slice left of the vertical wall there is a largest semicir-

cular wall for v, called the Gieseker wall. For all (β, α) between this wall and the vertical wall,

the moduli space Mσβ,α(v) coincides with the moduli space MH,D−KX/2(v) of (H,D− 1
2
KX)-

twisted Gieseker semistable sheaves.

We use these results as follows. Let v = (1, 0,−n) ∈ K0(X) be the vector for the Hilbert

scheme X [n], and let σ+ be a stability condition in the (H,D)-slice lying above the Gieseker

wall, so that Mσ+(v) ∼= X [n]. Let E/(X ×X [n]) be the universal ideal sheaf, and let σ0 be a

stability condition on the Gieseker wall. By the definition of the Gieseker wall, E is a family

of σ0-semistable objects, so there is an induced nef divisor Dσ0,E on X [n]. Furthermore,

curves orthogonal to Dσ0,E are understood in terms of destabilizing sequences along the wall,

so it is possible to test for extremality.
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Chapter 9

Gieseker walls and the nef cone

Fix an ample divisor H ∈ Pic(X) with H2 = d and an antieffective divisor D. In this section

we study the nef divisor arising from the Gieseker wall (i.e., the largest wall where some ideal

sheaf is destabilized) in the slice of the stability manifold given by the pair (H,D). We first

compute the Gieseker wall, and then investigate when the corresponding nef divisor is in

fact extremal.

9.1 Bounding higher rank walls

The main difficulty in computing extremal rays of the nef cone is to show that a destabilizing

subobject along the Gieseker wall is a line bundle, and not some higher rank sheaf. We first

prove a lemma which generalizes [CH14a, Proposition 8.3] from X = P2 to an arbitrary

surface. We prove the result in slightly more generality than we will need here as we expect

it to be useful in future work.

Lemma 9.1.1. Let σ0 be a stability condition in the (H,D)-slice, and suppose

0→ F → E → G→ 0

is an exact sequence of σ0-semistable objects of the same σ0-slope, where E is an (H,D)-
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twisted Gieseker semistable torsion-free sheaf. If the map F → E of sheaves is not injective,

then the radius ρW of the wall W defined by this sequence satisfies

ρ2
W ≤

(min{rk(F )− 1, rk(E)})2

2rk(F )
∆H,D(E).

Proof. The proof is similar to the proof in [CH14a] given in the case of P2; we present it for

completeness. The object F is a torsion-free sheaf by the standard cohomology sequence and

the fact that the heart of the t-structure in the slice we are working in consists of objects

which only have nonzero cohomology sheaves in degrees 0 and −1. The exact sequence along

W gives an exact sequence of sheaves

0→ K → F → E → C → 0

of ranks k, f, e, c, respectively. By assumption, k, f, e > 0. Let (sW , 0) be the center of W .

As F is in the categories Tβ whenever (β, α) is on W , we find µH,D(F ) ≥ sW + ρW , so

df(sW + ρW ) ≤ dfµH,D(F ) = chD1 (F ) ·H = (chD1 (K) + chD1 (E)− chD1 (C)) ·H

= dkµH,D(K) + deµH,D(E)− chD1 (C) ·H.

Similarly, K ∈ Fβ along W , so µH,D(K) ≤ sW − ρW and

df(sW + ρW ) ≤ dk(sW − ρW ) + deµH,D(E)− chD1 (C) ·H,

which gives

d(k + f)ρW ≤ d(k − f)sW + deµH,D(E)− chD1 (C) ·H. (9.1)

We now wish to eliminate the term chD1 (C) ·H in Inequality (9.1). If C is either 0 or torsion,

then chD1 (C) ·H ≥ 0 and −e = k − f , and we deduce

(k + f)ρW ≤ (k − f)(sW − µH,D(E)). (9.2)

Suppose instead that C is not torsion. Since C is a quotient of the semistable sheaf E, we

have µH,D(C) ≥ µH,D(E), so chD1 (C) ·H = dcµH,D(C) ≥ dcµH,D(E). As k − f = c − e, we

find that Inequality (9.2) also holds in this case.
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Both sides of Inequality (9.2) are positive, so squaring both sides gives

(k + f)2ρ2
W ≤ (k − f)2(sW − µH,D(E))2.

The formula (8.3) for ρ2
W shows this is equivalent to

(k + f)2ρ2
W ≤ (k − f)2

(
ρ2
W + 2∆H,D(E)

)
,

from which we obtain

ρ2
W ≤

(k − f)2

2kf
∆H,D(E).

Since k = f − e+ c, we see that k ≥ max{1, f − e}. By taking derivatives in k, we see that

(k−f)2

2kf
is decreasing for k+ f > 0, and so the maximum possible value of the right-hand side

must occur when k = max{1, f − e}. The denominator will be at least 2f in this case, and

the numerator is min{(f − 1)2, e2}. The result follows.

For our present work we will only need the next consequence of Lemma 9.1.1 which follows

immediately from computing ∆H,D(IZ).

Corollary 2. With the hypotheses of Lemma 9.1.1, if E is an ideal sheaf IZ ∈ X [n] and F

has rank at least 2, then the radius of the corresponding wall satisfies

ρ2
W ≤

2nd+ (H ·D)2 − dD2

8d2
:= %H,D,n.

The number %H,D,n therefore bounds the squares of the radii of higher rank walls for X [n].

9.2 Rank one walls and critical divisors

In the cases where we compute the Gieseker wall, the ideal sheaf that is destabilized along

the wall will be destabilized by a rank 1 subobject. We first compute the numerical walls

given by rank 1 subobjects.
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Lemma 9.2.1. Consider a rank 1 torsion-free sheaf F = IZ′(−L), where Z ′ is a zero-

dimensional scheme of length w and L is an effective divisor. In the (H,D)-slice, the nu-

merical wall W for X [n] where F has the same slope as an ideal IZ of n points has center

(sW , 0) given by

sW = −2(n− w) + L2 + 2(D · L)

2(H · L)
.

Proof. This is an immediate consequence of Equation (8.2) for the center of a wall.

Recalling that walls for X [n] left of the vertical wall get larger as their centers decrease, we

deduce the following consequence.

Lemma 9.2.2. If the Gieseker wall in the (H,D)-slice is given by a rank 1 subobject, then

it is a line bundle OX(−L) for some effective divisor L.

Proof. Suppose some IZ ∈ X [n] is destabilized along the Gieseker wall W by a sheaf of the

form IZ′(−L) where Z ′ is a nonempty zero-dimensional scheme and L is effective. By Lemma

9.2.1, the numerical wall W ′ given by OX(−L) is strictly larger than W . Since OX(−L) has

the same µH,D-slope as IZ′(−L) and IZ′(−L) is in the categories along W , we find that

OX(−L) is in at least some of the categories along W ′. But then W ′ is an actual wall, since

any ideal sheaf IZ where Z lies on a curve C ∈ |L| is destabilized along it. This contradicts

that W is the Gieseker wall.

Less trivially, there is a further minimality condition automatically satisfied by a line bundle

OX(−L) which gives the Gieseker wall. We define the set of critical effective divisors with

respect to H and D by

CrDiv(H,D) = {−D} ∪ {L ∈ Pic(X) effective : H · L < H · (−D)}.

By [Har77, Ex. V.1.11], the set CrDiv(H,D)/∼ of critical divisors modulo numerical equiv-

alence is finite. Therefore the set of numerical walls for X [n] given by line bundles OX(−L)

with L ∈ CrDiv(H,D) is also finite. Note that the inequality H ·L < H · (−D) is equivalent
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to the inequality µH,D(OX(−L)) > 0. The next proposition demonstrates the importance of

critical divisors.

Proposition 7. Assume 2n > D2, and suppose the subobject giving the Gieseker wall for

X [n] in the (H,D)-slice is a line bundle. Then the Gieseker wall is computed by OX(−L),

where L ∈ CrDiv(H,D) is chosen so that the numerical wall given by OX(−L) is as large

as possible.

Proof. First, consider the numerical wall W given by OX(D). By Lemma 9.2.1, the center

(sW , 0) has

sW =
2n−D2

2(H ·D)
< 0 (9.3)

since 2n > D2 and D is antieffective. Since µH,D(OX(D)) = ∆(OX(D)) = 0, Formula (8.3)

for the radius of W gives ρ2
W = s2

W . In particular, W is nonempty, and OX(D) lies in at

least some of the categories along W . Since D is antieffective, there are exact sequences of

the form

0→ OX(D)→ IZ → IZ⊂C → 0

where C ∈ |−D| and Z ⊂ C is a collection of n points. If no actual wall is larger than W ,

it follows that W is an actual wall and it is the Gieseker wall.

Suppose the Gieseker wall is larger than W and computed by a line bundle OX(−L) with

L effective. Since W passes through the origin in the (β, α)-plane, OX(−L) must lie in the

category T0. Therefore µH,D(OX(−L)) > 0, and L ∈ CrDiv(H,D).

Conversely, suppose L ∈ CrDiv(H,D) is chosen to maximize the wall W ′ given by OX(−L).

Then no actual wall is larger than W ′. Since sW < 0 and µH,D(OX(−L)) ≥ 0, we find that

OX(−L) is in at least some of the categories along W , and hence in at least some of the

categories along W ′. We conclude that W ′ is an actual wall, and therefore that it is the

Gieseker wall.

104



Combining Corollary 2 and Proposition 7 gives our primary tool to compute the Gieseker

wall.

Theorem 14. Assume 2n > D2, and let L ∈ CrDiv(H,D) be a critical divisor such that

the wall for X [n] given by OX(−L) is as large as possible. If this wall has radius ρ satisfying

ρ2 ≥ %H,D,n, then it is the Gieseker wall.

Conversely, if the Gieseker wall has radius satisfying ρ2 ≥ %H,D,n then it is obtained in this

way.

While the theorem is our sharpest result, it is useful to lose some generality to get a more

explicit version. Since −D ∈ CrDiv(H,D), if the wall given by OX(D) satisfies ρ2 ≥ %H,D,n

then the Gieseker wall is computed by Theorem 14. This allows us to compute the Gieseker

wall so long as n is large enough, depending only on the intersection numbers of H and D.

Corollary 3. Let

ηH,D :=
(H ·D)2 + dD2

2d
.

If n ≥ ηH,D then the Gieseker wall is the largest wall given by a critical divisor.

Furthermore, if n > ηH,D then every IZ destabilized along the Gieseker wall fits into an exact

sequence

0→ OX(−C)→ IZ → IZ⊂C → 0

for some curve C ∈ |L|, where L is a critical divisor computing the Gieseker wall. If

the critical divisor computing the Gieseker wall is unique, then OX(−C) and IZ⊂C are the

Jordan–Hölder factors of any IZ destabilized along the Gieseker wall.

Proof. Observe that the inequality n ≥ ηH,D automatically implies the inequality 2n > D2

needed to apply Theorem 14.

Let W be the wall for X [n] in the (H,D)-slice corresponding to OX(D). The center (sW , 0)

of W was computed in Equation (9.3), and ρ2
W = s2

W . We find that ρ2
W ≥ %H,D,n holds when

n ≥ ηH,D, with strict inequality when n > ηH,D.
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When n > ηH,D there can be no higher-rank destabilizing subobject of an IZ destabilized

along the Gieseker wall, so there is an exact sequence as claimed. Furthermore, if there is

only one critical divisor computing the wall, then there is a unique destabilizing subobject

along the wall, so the Jordan–Hölder filtration has length two.

9.3 Classes of divisors

In this subsection we give an elementary computation of the class of the divisor corresponding

to a wall in a given slice of the stability manifold. Similar results have been obtained by Liu

[Liu15], but the result is critical to our discussion so we include the proof. See [BM14b, §4]

for more details on the definitions and results we use here.

Throughout this subsection, let v ∈ K0(X) be a vector such that the moduli space MH,D(v)

of (H,D)-Gieseker semistable sheaves admits a (quasi-)universal family E which is unique up

to equivalence (Hilbert schemes X [n] are examples of such spaces). We also let σ = (Z,A) be

a stability condition in the closure of the Gieseker chamber for v in the (H,D)-slice. Then

there is a well-defined corresponding divisor Dσ ∈ N1(MH,D−KX/2(v)) which is independent

of the choice of E .

Let (v,w) = χ(v ·w) be the Euler pairing on Knum(X)R, and write v⊥ ⊂ Knum(X)R for the

orthogonal complement with respect to this pairing. The correspondence between stability

conditions and divisor classes is understood in terms of the Donaldson homomorphism

λ : v⊥ → N1(MH,D−KX/2(v)).

Since the Euler pairing is nondegenerate, there is a unique vector wσ ∈ v⊥ such that

=
(
−Z(w′)

Z(v)

)
= (w′,wσ)

for all w′ ∈ Knum(X)R. Bayer and Macr̀ı show that Dσ = λ(wσ). In what follows, we write

vectors in Knum(X)R as (ch0, ch1, ch2).
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Proposition 8. With the above assumptions, suppose σ lies on a numerical wall W in the

(H,D)-slice with center (sW , 0). Then wσ is a multiple of

(−1,−1

2
KX + sWH +D,m) ∈ v⊥,

where m is determined by the requirement wσ ∈ v⊥.

In particular, if X has irregularity 0 and v = (1, 0,−n) is the vector for X [n], then the divisor

Dσ is a multiple of

1

2
K

[n]
X − sWH

[n] −D[n] − 1

2
B.

Remark 9.3.1. Suppose X has irregularity 0. Up to scale, the divisors induced by stabil-

ity conditions in the (H,D)-slice give a ray in N1(X [n]) emanating from the class H [n] ∈

Nef(X) ⊂ Nef(X [n]). The particular ray is determined by the choice of the twisting divisor

D.

Proof of Proposition 8. Since σ is in the (H,D)-slice, write σ = σβ,α and (Z,A) = (Zβ,α,Aβ)

for short. Put z = −1/Z(v) = u+ iv. We evaluate the identity

=(zZ(w′)) = (w′,wσ)

defining wσ on various classes w′ to compute wσ.

Write the Chern character wσ = (r, C, d). Then

−v = =(zZ(0, 0, 1)) = ((0, 0, 1),wσ) = r,

so r = −v. Next, for any curve class C ′,

(u+ βv)(C ′ ·H) + v(C ′ ·D) = =(zZ(0, C ′, 0)) = ((0, C ′, 0),wσ) = χ(0,−vC ′, C ′ · C).

By Riemann–Roch and adjunction,

χ(0,−vC ′, C ′·C) = −v
((
−1

v
(C ′ · C) +

1

2
(C ′)2

)
− 1

2
(C ′)2 − 1

2
(C ′ ·KX)

)
= C ′·C+

v

2
(KX ·C ′),
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so

C ′ · C = (u+ βv)(C ′ ·H) + v(C ′ ·D)− v

2
(C ′ ·KX)

for every class C ′. Thus for any class C ′ with C ′·H = 0, we have C ′·C = v(C ′·D)− v
2
(C ′·KX);

it follows that there is some number a with

C = −v
2
KX + aH + vD.

Considering C = H shows that a = u+ βv. Therefore

wσ = (−v,−v
2
KX + (u+ βv)H,m),

where m is chosen such that wσ ∈ v⊥.

Finally, a straightforward calculation shows that

u

v
+ β = νσ(v) + β = sW

holds for all (β, α) along W . The follow up statement for Hilbert schemes follows by com-

puting the Donaldson homomorphism.

9.4 Dual curves

Suppose Dσ0 is the nef divisor corresponding to the Gieseker wall for X [n] in the (H,D)-slice.

Showing that Dσ0 is an extremal nef divisor amounts to showing that there is some curve

γ ⊂ X [n] with Dσ0 · γ = 0. By the Positivity Lemma, this happens when γ parameterizes

objects of X [n] which are generically S-equivalent with respect to σ0.

In every case where we computed the Gieseker wall, the wall can be given by a destabilizing

subobject which is a line bundle OX(−C) with C an effective curve. If Z is a length n

subscheme of C, then there is a destabilizing sequence

0→ OX(−C)→ IZ → IZ⊂C → 0.
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If ext1(IZ⊂C ,OX(−C)) ≥ 2, then curves of objects of X [n] which are generically S-equivalent

with respect to σ0 are obtained by varying the extension class. We obtain the following

general result.

Lemma 9.4.1. Suppose the Gieseker wall for X [n] in the (H,D)-slice is computed by the

subobject OX(−C), where C is an effective curve class of arithmetic genus pa(C). If n ≥

pa(C) + 1, then the corresponding nef divisor Dσ0 is extremal.

Proof. Bilinearity of the Euler characteristic χ(·, ·) and Serre duality shows that

χ(IZ⊂C ,OX(−C)) = pa(C)− 1− n.

Therefore, once n ≥ pa(C) + 1 we will have χ(IZ⊂C ,OX(−C)) ≤ −2, and curves orthogonal

to Dσ0 can be constructed by varying the extension class.

Combining Lemma 9.4.1 with our previous results on the computation of the Gieseker wall

gives us the following asymptotic result.

Theorem 15. Fix a slice (H,D) for Stab(X). There is some L ∈ CrDiv(H,D) such that

for all n � 0 the Gieseker wall is computed by OX(−L). Furthermore, the corresponding

nef divisor is extremal.

Proof. Recall that the set CrDiv(H,D)/∼ of critical divisors modulo numerical equivalence

is finite; say {L1, . . . , Lm} is a set of representatives. For 1 ≤ i ≤ m, let (si(n), 0) be the

center of the wall OX(−Li) for X [n]. Then si(n) is a linear function of n by Lemma 9.2.1,

so there is some i with si(n) ≤ sj(n) for all 1 ≤ j ≤ m and n � 0. Then by Corollary

3 the Gieseker wall is given by OX(−Li). Again increasing n if necessary, the divisor Dσ0

corresponding to the Gieseker wall is extremal by Lemma 9.4.1.

Remark 9.4.2. The requirement n ≥ pa(C) + 1 in Lemma 9.4.1 is not typically sharp. For

example, if |C| contains a smooth curve we may as well assume C is smooth. Then IZ⊂C is
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a line bundle on C, and

Ext1(IZ⊂C ,OX(−C)) ∼= H0(OC(Z)).

Thus g1
n’s on C give curves which are orthogonal to Dσ0. The following fact from Brill–

Noether theory therefore provides curves on X [n] for smaller values on n.

Lemma 9.4.3. [ACGH85] If C is smooth of genus g, then it has a g1
n for any n ≥ dg+2

2
e.

For specific surfaces, some curves in |C| may have highly special linear series giving better

constructions of curves on X [n].
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Chapter 10

Picard rank one examples

For the rest of the paper, we will apply the methods of Section 9 to compute Nef(X [n]) for

several interesting surfaces X. These applications form the heart of the paper.

10.1 Picard rank one in general

Suppose Pic(X) ∼= ZH for some ample divisor H. If we choose D = −aH, where a > 0 is

the smallest positive integer such that aH is effective, then CrDiv(H,D) = {−D}.

Lemma 10.1.1. Suppose Pic(X) = ZH and aH is the minimal effective class. If n ≥

(aH)2 = a2d, then the Gieseker wall for X [n] is the wall given by OX(−aH).

Proof. Apply Corollary 3 with D = −aH.

Note that when n > a2d, additional information about the Jordan–Hölder filtration can be

obtained as in Corollary 3. We use Formula (9.3) to see that the wall W given by OX(−aH)

has center (sW , 0) with

sW =
a

2
− n

ad

Combining Lemmas 10.1.1, 9.4.1, and Proposition 8, we have proved the following general

result.
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Theorem 16. Suppose PicX ∼= ZH and aH is the minimal effective class. If n ≥ a2d then

the divisor

1

2
K

[n]
X +

(a
2

+
n

ad

)
H [n] − 1

2
B (10.1)

is nef. Additionally, if n ≥ pa(aH) + 1 then this divisor is extremal, so Nef(X [n]) is spanned

by this divisor and H [n]. An orthogonal curve is given by letting n points move in a g1
n on a

curve of class aH.

Remark 10.1.2. If Pic(X) = ZH and H is already effective, then a different argument

computes the Gieseker wall so long as 2n > d, improving the bound in Lemma 10.1.1.

However, fine information about the Jordan–Hölder filtration of a destabilized ideal sheaf

is not obtained. In fact, if n ≤ d then the destabilizing behavior can be complicated. For

instance, a scheme Z contained in the complete intersection of two curves of class H will

admit an interesting map from OX(−H)⊕2.

Proposition 9. Suppose PicX = ZH and H is effective. If 2n > d, then the Gieseker wall

for X [n] in the (H,−H)-slice is the wall given by OX(−H). Thus the divisor (10.1) with

a = 1 is nef.

Proof. Let W be the numerical wall given by OX(−H). By the proof of Proposition 7, if no

actual wall is larger than W then W is an actual wall, and hence the Gieseker wall. If there

is a destabilizing sequence

0→ F → IZ → G→ 0

giving a wall W ′ larger than W , then F,G ∈ A0 since W passes through the origin in the

(β, α)-plane. Fix α > 0 such that (0, α) lies on W ′. We have

H · ch−H1 (F ) = =Z0,α(F ) ≥ 0 and H · ch−H1 (G) = =Z0,α(G) ≥ 0.

Since d is the smallest intersection number of H with an integral divisor and

d = =Z0,α(IZ) = =Z0,α(F ) + =Z0,α(G)
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we conclude that either =Z0,α(F ) = 0 or =Z0,α(G) = 0. Thus either F or G has infinite

σ0,α-slope, contradicting that (0, α) is on W ′.

We now further relax the lower bound on n needed to guarantee the existence of orthogonal

curve classes in special cases.

10.2 Surfaces in P3

By the Noether–Lefschetz theorem, a very general surface X ⊂ P3 of degree d ≥ 4 is smooth

of Picard rank 1 and irregularity 0. Let H be the hyperplane class and put D = −H. We

have KX = (d− 4)H, so Proposition 9 shows that if 2n > d then the divisor(
d

2
− 3

2
+
n

d

)
H [n] − 1

2
B

is nef. If C is any smooth hyperplane section then the projection from a point on C gives a

degree d− 1 map to P1, so C carries a g1
n for any n ≥ d− 1. We have proved the following

result.

Proposition 10. Let X be a smooth degree d hypersurface in P3 with Picard rank 1. The

divisor (
d

2
− 3

2
+
n

d

)
H [n] − 1

2
B

on X [n] is nef if 2n > d. If n ≥ d − 1, then it is extremal, and together with H [n] it spans

Nef(X [n]).

Remark 10.2.1. The behavior of Nef(X [n]) for smaller n in Proposition 10 is more myste-

rious. Even the cases d = 5 and n = 2, 3 are interesting.

Remark 10.2.2. The case d = 4 of Proposition 10 recovers a special case of [BM14b,

Proposition 10.3] for K3 surfaces. The case d = 1 recovers the computation of the nef cone

of P2[n] [ABCH12].
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10.3 Branched covers of P2

Next we consider cyclic branched covers of P2. Let X be a very general cyclic degree d cover

of P2, branched along a degree e curve. Note that this means that d necessarily divides

e. We can view these covers as hypersurfaces in a weighted projective space, which gives

us a Noether–Lefschetz type theorem: PicX = ZH, generated by the pullback H of the

hyperplane class on P2, provided that X has positive geometric genus. The canonical bundle

of X is

KX = −3H + e

(
d− 1

d

)
H =

(
e(d− 1)

d
− 3

)
H.

Then X will have positive geometric genus if e ≥ 3d/(d− 1).

Setting D = −H, we see that if 2n > d then the divisor class(
e(d− 1)

2d
− 1 +

n

d

)
H [n] − 1

2
B

is nef by Proposition 9. The preimage of a line is a curve of class H, and it carries a g1
d given

by the map to P2. Therefore the above divisor is extremal once n ≥ d.

Proposition 11. Let X be a very general degree d cyclic cover of P2 ramified along a degree

e curve, where d divides e and e ≥ 3d
d−1

. The divisor(
e(d− 1)

2d
− 1 +

n

d

)
H [n] − 1

2
B

on X [n] is nef if 2n > d. For n ≥ d, this class is extremal, and together with H [n] it spans

Nef(X [n]).
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Chapter 11

Del Pezzo surfaces of degree one

In [BC13], Bertram and Coskun studied the birational geometry of X [n] when X is a minimal

rational surface or a del Pezzo surface. In particular, they completely computed the nef

cones of all these Hilbert schemes except in the case of a del Pezzo surface of degree 1. The

constructions they gave were classical: they produced nef divisors from k-very ample line

bundles, and dual curves by letting collections of points move in linear pencils on special

curves.

In this section, we will compute the nef cone of X [n], where X is a smooth del Pezzo surface

of degree 1. Then X ∼= Blp1,...,p8 P2 for distinct points p1, . . . , p8 with the property that −KX

is ample (see [Man74, Theorem 24.4] or [?, Ex. V.21.1]). This application exhibits the full

strength of the methods of Section 9.

11.1 Notation and statement of results

Let H be the class of a line and let E1, . . . , E8 be the 8 exceptional divisors over the pi, so

Pic(X) ∼= ZH ⊕ ZE1 ⊕ · · · ⊕ ZE8 and KX = −3H +
∑

iEi. Recall that a (−1)-curve on X

is a smooth rational curve of self-intersection −1. It is simplest to describe the dual cone of

effective curves. We recommend reviewing §8.1 for notation.
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Theorem 17. The cone of curves NE(X [n]) is spanned by all the classes E[n] given by (−1)-

curves E ⊂ X, the class of a curve contracted by the Hilbert–Chow morphism, and the class

F[n], where F ∈ |−KX | is an anticanonical curve.

The 240 (−1)-curves E on X are well-known. The possible classes are

(0; 1) (1; 12) (2; 15) (3; 2, 16) (4; 23, 15) (5; 26, 12) (6; 3, 27),

where e.g. (4; 23, 15) denotes any class equivalent to

4H − 2E1 − 2E2 − 2E3 − E4 − E5 − E6 − E7 − E8

under the natural action of S8 on Pic(X). The cone of curves NE(X) is spanned by the

classes of the (−1)-curves. The Weyl group action on Pic(X) acts transitively on (−1)-curve

classes. It also acts transitively on systems of 8 pairwise disjoint (−1)-curves; dually, it acts

transitively on the extremal rays of the nef cone Nef(X). We refer the reader to [Man74,

§26] for details.

Consider the divisor class (n−1)(−KX)[n]−B
2

. If E is any (−1)-curve onX, then−KX ·E = 1,

so

E[n] · ((n− 1)(−KX)[n] − 1

2
B) = (n− 1)(−KX · E)− (n− 1) = 0.

Let Λ ⊂ N1(X [n]) be the cone spanned by divisors which are nonnegative on all classes E[n]

and curves contracted by the Hilbert–Chow morphism. It follows that Λ ⊃ Nef(X [n]) is

spanned by Nef(X) ⊂ Nef(X [n]) and the single additional class (n− 1)(−KX)[n] − B
2

.

However, Nef(X [n]) ⊂ Λ is a proper subcone. Indeed, if F ∈ |−KX | is an anticanonical curve

then by Riemann-Hurwitz F[n] ·B = 2n, so F[n] · ((n− 1)(−KX)[n]− B
2

) = −1. Let Λ′ ⊂ Λ be

the subcone of F[n]-nonnegative divisors. Taking duals, we see that Theorem 17 is equivalent

to the next result.

Theorem 18. We have Nef(X [n]) = Λ′.
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To prove Theorem 18, we must show that all the extremal rays of Λ′ are actually nef.

Suppose N ∈ Nef(X) spans an extremal ray of Nef(X). Then the cone spanned by N [n]

and (n− 1)(−KX)[n] − B
2

contains a single ray of F[n]-orthogonal divisors, and this ray is an

extremal ray of Λ′. Conversely, due to our description of the cone Λ, the extremal rays of Λ′

which are not in Nef(X) are all obtained in this way.

11.2 Choosing a slice

More concretely, making use of the Weyl group action we may as well assume our extremal

nef class N ∈ Nef(X) is H − E1. The corresponding F[n]-orthogonal ray described in the

previous paragraph is spanned by

(n− 1)(−KX)[n] +
1

2
(H [n] − E[n]

1 )− 1

2
B; (11.1)

our job is to show that this class is nef. We will prove this by exhibiting this divisor as

the nef divisor on X [n] corresponding to the Gieseker wall for a suitable choice of slice of

Stab(X).

To apply the methods of Section 9, it is convenient to choose our polarization to be

P =

(
n− 3

2

)
(−KX) +

1

2
(H − E1)

(which depends on n!) and our antieffective class to be D = KX . Observe that P is ample

since it is the sum of an ample and a nef class. If we show that the Gieseker wall W in the

(P,KX)-slice has center (sW , 0) = (−1, 0), then Proposition 8 implies the divisor class (11.1)

is nef.

11.3 Critical divisors

Our plan is to apply Corollary 3 to compute the Gieseker wall in the (P,KX)-slice. We must

first identify the set CrDiv(P,KX) of critical divisors.
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Lemma 11.3.1. If n > 2, then the set CrDiv(P,KX) consists of −KX and the classes L of

(−1)-curves on X with L · (H − E1) ≤ 1.

When n = 2, the above classes are still critical. Additionally, the class H −E1 is critical, as

is any sum of two (−1)-curves L1, L2 with Li · (H − E1) = 0.

Proof. Write 2P = A + N where A = (2n − 3)(−KX) is ample and N = H − E1 is nef.

Then A · (−KX) = 2n − 3 and N · (−KX) = 2, so an effective curve class L 6= −KX is in

CrDiv(P,KX) if and only if L · (2P ) < 2n− 1.

First suppose n > 2, and let L ∈ CrDiv(P,KX). If L · (−KX) ≥ 2, then L · (2P ) ≥ 4n− 6 >

2n− 1, so L is not critical. Therefore L · (−KX) = 1. Thus any curve of class L is reduced

and irreducible. By the Hodge index theorem,

L2 = L2 · (−KX)2 ≤ (L · (−KX))2 = 1,

with equality if and only if L = −KX . If the inequality is strict, then by adjunction we must

have L2 = −1 and L is a (−1)-curve. Since L · (2P ) < 2n− 1, we further have L ·N ≤ 1.

Suppose instead that n = 2 and L ∈ CrDiv(P,KX). The cases L · (2P ) ≤ 1 and L · (2P ) ≥ 3

follows as in the previous case. The only other possibility is that L·(−KX) = 2 and L·N = 0.

Since L ·N = 0, the curve L is a sum of curves in fibers of the projection X → P1 given by

|N |. This easily implies the result.

The next application of Corollary 3 completes the proof of Theorems 17 and 18.

Proposition 12. The Gieseker wall for X [n] in the (P,KX)-slice has center (−1, 0), and is

given by the subobject OX(KX). It coincides with the wall given by OX(−L), where L is any

(−1)-curve with L · (H − E1) = 0.

Proof. By Equation (9.3), the center of the wall for OX(KX) is (sW , 0) with

sW =
2n−K2

X

(2P ) ·KX

= −1.
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A straightforward computation shows ηP,KX < n for all n ≥ 2. Therefore, by Corollary 3,

the Gieseker wall is computed by a critical divisor.

We only need to verify that no other critical divisor gives a larger wall. Let L ∈ CrDiv(P,KX).

By Lemma 9.2.1, the center of the wall given by OX(−L) lies at the point (sL, 0) where

sL = −2n+ L2 + 2(KX · L)

(2P ) · L
.

If L is a (−1)-curve, then

sL = − 2n− 3

(2P ) · L
= − 2n− 3

2n− 3 + L · (H − E1)
≥ −1,

with equality if and only if L · (H − E1) = 0. This proves the result if n > 2.

To complete the proof when n = 2, we only need to consider the additional critical classes

mentioned in Lemma 11.3.1. For every such L ∈ CrDiv(P,KX) we have L ·KX = −2 and

L2 ≤ 0. Thus sL ≥ 0 for every such divisor.
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[CC10] Dawei Chen and Izzet Coskun. Stable base locus decompositions of Kontsevich

moduli spaces. Michigan Math. J., 59(2):435–466, 2010.

[CC11] Dawei Chen and Izzet Coskun. Towards Mori’s program for the moduli space

of stable maps. Amer. J. Math., 133(5):1389–1419, 2011. With an appendix by

Charley Crissman.

[CG90] Fabrizio Catanese and Lothar Gœttsche. d-very-ample line bundles and embed-

dings of Hilbert schemes of 0-cycles. Manuscripta Math., 68(3):337–341, 1990.

[CH14a] I. Coskun and J. Huizenga. The ample cone of moduli spaces of sheaves on the

plane. ArXiv e-prints, September 2014.

[CH14b] Izzet Coskun and Jack Huizenga. Interpolation, Bridgeland stability and monomial

schemes in the plane. J. Math. Pures Appl. (9), 102(5):930–971, 2014.

[Dan04] Gentiana Danila. Sur la cohomologie de la puissance symétrique du fibré tau-
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[GNY08] Lothar Göttsche, Hiraku Nakajima, and Kota Yoshioka. Instanton counting and

donaldson invariants. Journal of Differential Geometry, 80(3):343–390, 2008.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg,

1977. Graduate Texts in Mathematics, No. 52.

[HH09] Brendan Hassett and Donghoon Hyeon. Log canonical models for the moduli space

of curves: the first divisorial contraction. Trans. Amer. Math. Soc., 361(8):4471–

4489, 2009.

[HH13] Brendan Hassett and Donghoon Hyeon. Log minimal model program for the mod-

uli space of stable curves: the first flip. Ann. of Math. (2), 177(3):911–968, 2013.

[HL97] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves.

Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig, 1997.

[HT09] Brendan Hassett and Yuri Tschinkel. Moving and ample cones of holomorphic

symplectic fourfolds. Geom. Funct. Anal., 19(4):1065–1080, 2009.

125



[HT10] Brendan Hassett and Yuri Tschinkel. Intersection numbers of extremal rays on

holomorphic symplectic varieties. Asian J. Math., 14(3):303–322, 2010.

[Huy99] Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results. Invent. Math.,

135(1):63–113, 1999.

[Iye] N. Jaya Iyer. Projective normality of abelian surfaces¶given by primitive line

bundles. manuscripta mathematica, 98(2):139–153.

[Kan94] Ernst Kani. Elliptic curves on abelian surfaces. Manuscripta Math., 84(2):199–223,

1994.

[Kaw02] Yujiro Kawamata. D-equivalence and K-equivalence. J. Differential Geom.,

61(1):147–171, 2002.

[Kod64] K. Kodaira. On the structure of compact complex analytic surfaces, i. American

Journal of Mathematics, 86(4):751–798, 1964.
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