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Introduction

The idea of triangulated category and the one of derived category, which are originally
due to Grothendieck and Verdier, have been at the center of a good portion of
contemporary research in algebraic geometry.
The axioms behind the notion of derived category seem, at a first glance, somewhat
unnatural. To answer the question: "why do we need to study derived categories?"
it is interesting to read Verdier’s words in his PhD thesis.

“Dans l’ étude des foncteurs dérivés d’un foncteur composé de deux foncteurs, des
propriétés d’associativité, des relations du type de Künneth, on est amené à étendre
le formalisme des foncteurs dérivés au cas où l’argument n’est plus seulement un
objet de la catégorie étudiée, mais un complexe d’objets de cette catégorie. ”

Hence, the most natural answer to the question "why derived categories?" lies in the
world of derived functors.
In algebraic geometry, there exists a class of functors which arise in a natural way
(the global sections of a coherent sheaf, the need to pull-back or the push forward
of a coherent sheaf, the tensor product of sheaves, etc.). These are functors from
the category Coh to itself. The category Coh is abelian and it makes sense to talk
about exact sequences in Coh and ask wether these functors are exact. Some of
these functors are just right or left exact an the lack of exactness is in some sense
measured by the derived functors of the given functor.
It turns out that the most natural context to define these functors is not the category
Coh itself but its derived category in which the objects are complexes of coherent
sheaves rather than coherent sheaves.
The structure of a triangulated category comes up while studying derived categories.
What happens is that the derived category of an abelian category is in general not
abelian, but it admits, nonetheless, an additional structure which makes it behave
almost like an abelian category. A triangulated category axiomatizes this behavior.
In a triangulated category exact sequences are replaced by distinguished triangles.
Given the derived category of a variety D(X), it is natural to consider its group of
exact autoequivalences AutD(X). A powerful tool, in this context, is the Fourier-
Mukai tranform: the idea behind it is that one can go from the derived category of
a certain variety X to the derived category of another varitety Y via the derived
category of their product, X × Y . To each object of the derived category E • ∈
D(X × Y ) one can associate a Fourier-Mukai transform ΦE • and give explicit
condition for it to be fully faithful. The importance of Fourier-Mukai transforms lies
in a theorem due to Orlov, namely Theorem 3.1.5: given an exact autoequivalence of
D(X), there exists an object in D(X×X) such that the corresponding Fourier-Mukai
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transform is isomorphic to the exact autoequivalence itself. This means that the
group AutD(X) can be described in terms of the category D(X ×X). This will
be very useful when considering the natural action of the group AutD(X) on the
variety of Bridgeland’s stability conditions.
In fact the main objective of this thesis, is to study Bridgeland’s idea of extending
the notion of a stability condition to an arbitrary triangulated category.
The notion of stability first came up in building moduli spaces of sheaves on a fixed
variety. Given an ample divisor H on a complex variety X, one can define the slope
of a torsion - free sheaf F with respect to H as:

µH(F ) := c1(F ) ·H
rk(F ) ;

a sheaf F is called stable if for each subsheaf E ⊂ F , one has µH(E ) < µH(F ) or,
equivalently, for each quotient F −→ G one has µH(F ) < µH(G ).
The idea behind Bridgekland’s theory has been first introduced by Douglas, who
developed the theory of Π-stability in the context of D-branes, then it was generalized
by Bridgeland in [2]. What Bridgeland observed is that to get some nicely behaved
stability condition, one has to require a positivity condition on nonzero objects. He
defines a stability function on al abelian category A as a group homomorphism

Z : K(A ) −→ C

such that if [E] 6= [0] in the Grothendieck group K(A ), then Z([E]) lies in the
positive upper-half plane H = {reiπφ | φ ∈ (0, 1]}. Then the slope of an object
E ∈ A is defined as

φ(E) = −<Z([E])
=Z([E]) ,

where [E] is the class of E in the Grothendieck group. Exactly as in the old notion
of stability, an object is called semistable (resp. stable ) if for each proper subobject
F ⊂ E, one has φ(F ) ≤ φ(E) (resp φ(F ) < φ(E)). Roughly speaking, one is asking
that the ordering given by phases behaves well with respect to subobjects and
quotients, i.e. with respect to the abelian character of the category A . Everything
goes well, until one tries to deform a stability function (i.e., considering small
perturbation of the phases of semistable objects ). The problem, in fact, is that
there are stability function which, when deformed, do not respect the positivity
condition anymore: intuitively, one can think of the case when there exist semistable
objects with phase equal to one. The problem is then solved by considering a
triangulated category, instead of an abelian one. This idea simply comes by noticing
that if a vector lies in the lower half plane, then its image via the reflection with
respect to the origin lies in the upper-half plane again, and from the fact that, in
the Grothendieck group of a triangulated category D , one has that −[E] = [E[1]]
for each [E] ∈ K(D). Therefore, we need to shift object in order to preserve the
positivity condition. Unfortunately, when passing from an abelian to a triangulated
category, one loses the concepts of "subobject" and "quotient": a new tool is needed
in order to take the ordering back. Rougly speaking, what one does is to slice the

viii



category into slices which are indexed by real numbers, so that it becomes again
possible to talk about phases.
The next step is to take the set Stab(D) of all the stability conditions on a triangulated
category D and put a topology on it. A key result (Theorem 2.4.8) is that the
topological space Stab(D) can be endowed with the structure of a complex manifold.
To study this space is one can study all the moduli spaces of objects in the derived
category D which can be built by varying the stability condition. In particular, we
will fix our attention to the case when D is the derived category of a K3 surface
X. The space Stab(X) := Stab(Db(X)) has a wall-and-chamber structure. This
means that the condition for an object to be stable is preserved through small
deformations of the stability condition, until one crosses one of the walls (which
will be codimension-one subvarieties), which marks a ”border” of stability condition.
Then, the question one can ask is: "what happens to the moduli space of objects
in the category when crossing a wall?". The answer is that there are particular
birationalities, called Mukai flops, which map a given moduli space to the ones
across the various walls.
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Chapter 1

Triangulated and derived
categories

1.1 Triangulated categories
Triangulated categories were first introduced by Verdier in his PhD thesis, whose
goal was to supply to the structure of an abelian category whenever it was not
available. The rise of this additional structure came up while studying the derived
category of an arbitrary abelian category: the point is that, even if a category A is
abelian, its derived category D(A ) is almost never abelian (we will later produce a
very convincing example of it). The peculiarity of a triangulated structure is that
the objects characterizing abelian categories, i.e. short exact sequences, are replaced
by similar objects, the so called distinct triangles, which in some way “behave like”
short exact sequences. This will allow us to define a weaker version of the concepts
of “subobject” and “quotient”, so that it will be easier to replicate what we usually
do in abelian categories. Let us start recalling a definition:

Definition 1.1.1. Let C , D be additive categories. An additive equivalence be-
tween C and D is an equivalence F : C → D so that, for every couple of objects
A,B ∈ C , the function HomC (A,B)

∼=−→ HomD(F (A), F (B)) (I will usually write
Hom(•, •) omitting the ambient category when it is beyond misunderstanding) is an
isomorphism of abelian groups.

We are now ready to define a triangulated structure on an additive category.

Definition 1.1.2. Let D be an additive category. A triangulated structure on D is
given by:

• an additive equivalence T : D −→ D , called shift functor ;

• a class of distinguished triangles (shortly DT ), i.e. triangles of the form
A

f−→ B
g−→ C

h−→ T (A), with A,B,C ∈ Ob(D), verifying the following
axioms:

TC1 i) Every triangle of the form A
id−→ A→ 0→ T (A) is a DT;

ii) If A f−→ B
g−→ C

h−→ T (A) is a DT, then its shift B g−→ C
h−→

T (A) T (f)−→ is a DT;

1



2 1. Triangulated and derived categories

iii) Any morphism A
f−→ B can be completed to a DT: it means that

there exists an object C and a morphism B
g−→ C so that the triangle

A
f−→ B

g−→ C
h−→ T (A) is a DT;

A morphism of DT is a commuting diagram of the form:

A //

α

��

B //

β
��

C //

γ

��

T (A)

T (α)
��

A′ // B′ // C ′ // T (A′).

A morphism of DT is an isomorphism if α, β, γ are isomorphism in D (note
that if α is an isomorphism, then T (α) is an isomorphism, too, because the
functor T is an equivalence).

TC2 Any triangle isomorphic to a DT is a DT itself.

TC3 If A −→ B −→ C −→ T (A) and A′ −→ B′ −→ C ′ −→ T (A′) are DT
and if there exists a pair of morphisms α : A −→ A′ and β : B −→ B′ so
that the square

A //

α
��

B

β
��

A′ // B′

commutes, then there exists a morphism γ : C −→ C ′ (not necessarily
unique) so that the diagram

A //

α

��

B //

β
��

C //

γ

��

T (A)

T (α)
��

A′ // B′ // C ′ // T (A′)

commutes.

TC4 (Octahedron axiom) given the following three DTs:

A
f−→ B

h−→ C ′ −→ T (A)

B
g−→ C

k−→ A′ −→ T (B)

A
g◦f−→ C

l−→ B′ −→ T (A)

there exist a DT C ′
u−→ B′

v−→ A′
w−→ T (C ′) so that the diagram below

commutes:
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A
f //

id

��

B
h //

h

��

C ′ //

u

��

T (A)

id
��

A
g◦f //

f

��

C
l //

id

��

B′ //

v

��

T (A)

T (f)
��

B
g //

h
��

C
k //

l
��

A′ //

id
��

T (B)

T (h)
��

C ′
u // B′

v // A′
w // T (C ′)

this diagram can also be displayed as an octahedron (hence the name):

B′

v

''

��������������������

C ′

u

88

+1
��

A′
+1oo

+1 ���

����

����������A
g◦f //

f
''NNNNNNNNNNNNN C

OO

^^>>>>>>>>>>>>>>>>>>

B

g

77ooooooooooooo

========

====

^^===

.

Sometimes it could be useful to visualize the octahedron axiom as follows: if
we have a composition

A
f−→ B

g−→ C

then the cones of f, g and g ◦ f fit in a distinguished triangle:

D

+1
=={{{{{{{{

��1
111111111111

B

C(f)

FF�������������

g   @@@@@@@@ F

��0
0000000000000

+1
66nnnnnnnnnnnnnn

C
C(g)

''PPPPPPPPPPPPPP

C(g◦f)
>>~~~~~~~~

A

f

GG��������������

g◦f
77nnnnnnnnnnnnnn

E
+1

��@@@@@@@@



4 1. Triangulated and derived categories

Roughly speaking, we set a class of object resembling short exact sequence, which
we ask to contain trivial objects, to have enough objects and morphisms between
them, and to be closed under shift and isomorphism.

Notation 1.1.3. We will usually write A[1] and f [1] for T (A) and T (f) respectively,
and a DT might also be written as A −→ B −→ C

+1−→.

There follow some ready-made properties:

Properties:
We recall that, if (D , T ) is a triangulated category and A and abelian category, an
additive functor F : D −→ A is cohomological if whenever A −→ B −→ C

+1−→ is a
DT in D , then F (A) −→ F (B) −→ F (C) is an exact sequence in A .

1. The composition of two subsequent arrows in a DT is zero.

Proof. There is a commutative diagram:

A
id //

id
��

A //

f

��

0 //

��

T (A)

id
��

A
f // B

g // C // T (A).

The two triangles are both distinct and the first square on the left obviously
commutes, so there exists an arrow (the dotted one in the diagram, which is
clearly trivial), so that everything commutes. In particular, we have g ◦ f =
f ◦ 0 = 0.

2. For any X ∈ D the functors Hom(X, •) and Hom(•, X) are cohomological
functors between D and Ab, where Ab is the category af abelian groups. (Note
that TC1 ii) implies that each DT gives rise to a long exact sequence in Ab).

Proof. We want to prove that if A −→ B −→ C
+1−→ the sequences

Hom(X,A) −→ Hom(X,B) −→ Hom(X,C)

Hom(C,X) −→ Hom(B,X) −→ Hom(A,X)

are exact. Let us consider the first sequence: the fact that Kerβ ⊃ Imα follows
from the first property. To prove the converse, consider ψ ∈ Hom(X,B) such
that g ◦ ψ = 0. We have the following diagram:

X
Id //

��

X //

ψ

��

0

��

// X[1]

��
A

f // B
g // C // A[1]
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the center square commutes, so we can applying a slightly modified third axiom
to get the dotted map which lifts ψ. Arguing in a similar way, one proves that
the second sequence is exact, too.

3. If we have a morphism between two triangles

A //

α

��

B //

β
��

C //

γ

��

A[1]

α[1]
��

A′ // B′ // C ′ // A′[1].

and any two vertical arrows are isomorphisms, so is the third one (nice use of
the five lemma).

Proof. We apply the first of all the third axiom to get an arrow C −→ C ′

which makes everything commute, then we use the preceding property. Let us
suppose that the first two of the vertical arrows are isomorphisms. Applying
the functor Hom(X, •) to the diagram, we get:

Hom(X,A) //

∼=Hom(X,α)

��

Hom(X,B) //

∼=Hom(X,β)

��

Hom(X,C) //

Hom(X,γ)

��

Hom(X,A[1]) //

∼=Hom(X,α[1])

��

Hom(X,B[1])

∼=Hom(X,β[1])

��
Hom(X,A′) // Hom(X,B′) // Hom(X,C ′) // Hom(X,A′[1]) // Hom(X,B′[1])

where, for all X ∈ D , all the vertical arrows except the middle one are
isomorphisms, and everything commutes because it commutes first of all in
the two TDs diagram. Then, the five lemma ensure us that the middle one,
too, is an isomorphism. But the fact that Hom(X,C)

∼=−→ Hom(X,C ′) is an
isomorphism for all X ∈ D implies that C

∼=−→ C ′ is an isomorphism, too.

4. The direct sum1 of two DTs is a DT.

Proof. Let A f−→ B
g−→ C

+1−→ and A′ f ′−→ B′
g′−→ C ′

+1−→ be distinct triangle.
The morphism A ⊕ A′ (f,f ′)−→ B ⊕ B′ can be completed to a distinct triangle:
A⊕A′ (f,f ′)−→ B ⊕B′ α−→ D

β−→ A[1]⊕A′[1]2. We have two diagrams:

A
f //(

IdA
0

)
��

B
g //(

IdB
0

)
��

C //

ϕ

��

A[1]

��
A⊕A′

(f,f ′)
// B ⊕B′ // D // A[1]⊕A′[1]

1To be precise, here the symbol of direct sum means the coproduct in D , which is first of all
additive.

2Notice that (A⊕A′)[1] ∼= A[1]⊕A′[1] because the shift functor is an equivalence.
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A′
f ′ //(

0
IdA′

)
��

B′
g′ //(

0
IdB′

)
��

C ′ //

ϕ′

��

A[1]

��
A⊕A′

(f,f ′)
// B ⊕B′ // D // A[1]⊕A′[1]

which are both commutative because of the third axiom. Therefore, also the
following one is commutative:

A⊕A′ //

IdA⊕A′
��

B ⊕B′ //

IdB⊕B′
��

C ⊕ C ′ //

(ϕ,ϕ′)
��

A[1]⊕A′[1]

��
A⊕A′ // B ⊕B′ α // D

β // A[1]⊕A′[1].

We have thus found a map C ⊕ C ′ (ϕ,ϕ′)−→ D which makes everything commute.
We just need to show that this map is an isomprphism. Apply the functor
Hom(X, •) to the diagram:

Hom(X,A⊕A′) //

Hom(X,IdA⊕A′ )

��

Hom(X,B ⊕B′) //

Hom(X,IdB⊕B′ )

��

Hom(X,C ⊕ C′) //

Hom(X,(ϕ,ϕ′))

��

Hom(X,A[1⊕A′[1]) //

��

Hom(X,B[1]⊕B′[1])

��
Hom(X,A⊕A′) // Hom(X,B ⊕B′) // Hom(X,D) // Hom(X,A[1]⊕A′[1]) // Hom(X,B[1]⊕B′[1])

the first row is exact because it is the direct sum of two exact sequences
(remember that Hom(X,Y ⊕ Z) ∼= Hom(X,Y )⊕Hom(X,Z) for all X,Y, Z ∈
D), while the second one is exact because we are just applying the functor
Hom(X, •) to a DT. Moreover, all the vertical arrows except the middle one are
isomorphisms (again, Hom(X, •) applied to the identity map), so the middle
one is an isomorphism, too, because of the five lemma. But, by the arbitrary
choice of X, we can conclude that the map C ⊕ C ′ (ϕ,ϕ′)−→ D is an isomorphism,
as well.

5. If A
f−→ B

g−→ C
h−→ A[1] is a DT and h is the zero morphism, then

B ∼= A⊕ C.

Proof. The triangle A (IdA,0)−→ A⊕ C (0,IdC)−→ C
h−→ A[1] is the direct sum of the

triangles A IdA−→ A −→ 0 −→ A[1] and 0 −→ C
IdC−→ C −→ 0 which are distinct

because of axiom TC1, so it is distinct itself. Therefore, applying the functor
Hom(X, •) for some X ∈ D , we get an exact sequence:

Hom(X,A) −→ Hom(X,A)⊕Hom(X,C) −→ Hom(X,C) Hom(X,h)−→ Hom(X,A[1]) .
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By exactness, the map Hom(X,h) must be zero, and by the fact that we can
choose an arbitrary X ∈ D , we get that h = 0 itself. For the converse, let us
consider the following diagram:

C[−1]h[−1] //

Id
��

A //

Id
��

B //

��

C

Id
��

C[−1] 0 // A // A⊕ C // C

we supposed h = 0, so h[−1] = 0, too, because the shift functor is an equivalence.
The first square obviously commutes, so the dotted arrow in the diagram exists
and everything commutes. Moreover, we have two out of the three vertical
arrows which are isomorphisms, so applying property 2. we get that the third
one is an isomorphism, too.

6. If A f−→ B
g−→ C

h−→ T (A) is a DT, then A ∼= B iff C ∼= 0.

Proof. As usual, let us apply the functor Hom(X, •) to the DT:

Hom(X,C[−1]) −→ Hom(X,A) −→ Hom(X,B) −→ Hom(X,C) −→ Hom(X,A[1]) .

Now, C ∼= 0 (and therefore C[−1] ∼= 0 because the inverse of the shift functor is
an equivalence, as well) if and only if Hom(X,C) = 0 and Hom(X,C[−1]) = 0
for all X ∈ D and, in this case, Hom(X,A) ∼= Hom(X,B). But this holds for
all X ∈ D if and only if A ∼= B.

We will now prove a proposition which will help us later, when our goal will be to
prove that the derived category of an abelian category in general is not abelian.

Proposition 1.1.4. Let A be an abelian triangulated category. Then A is semisim-
ple, i.e. any short exact sequence in A splits.

Proof. Let 0 −→ A
f−→ B be a monomorphism in A . The morphism A

f−→ B can
be completed to a DT , i.e. there exist an object C ∈ D and a morphism B

g−→ C

so that the triangle A f−→ B
g−→ C

h−→ A[1] is distinguished. It means that the
triangle C[−1] h[−1]−→ A

f−→ B
g−→ C is distinguished, too. By property 1) we get

that h[−1] ◦ f = 0 and the fact that f is a monomorphism implies h[−1] = 0. But
the shift functor (and therefore its inverse) is an equivalence, so h = 0. By property
4), this means that B ∼= A⊕ C
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1.2 Derived categories: a rough construction
We will now give an idea of what the derived category of an abelian category is. Note
that almost everything we are going to introduce in this section can be done with
arbitrary caregories, but we will treat just the abelian case, because we are mainly
interested in it. Let A be an abelian category, as usual. We are now interested in
the complexes of objects which belong to A .
Definition 1.2.1. A complex in A is a diagram of this form:

... −→ Ai−1 di−1
−→ Ai

di−→ Ai+1 di+1
−→ ... ,

where:

1. Aj ∈ A ,

2. dj+1 ◦ dj = 0

for all j ∈ Z.

Notation 1.2.2. We will usually write A• instead of (... −→ Ai−1 di−1
−→ Ai

di−→
Ai+1 di+1

−→ ...).
Definition 1.2.3. A morphism of complexes f• : A• −→ B• is a family of arrows
{f j}j∈Z such that the diagram

... // Ai−1 di−1
A //

f i−1
��

Ai
diA //

f i

��

Ai+1 di+1
A //

f i+1
��

...

... // Bi−1 di−1
B // Bi

diB // Bi+1 di+1
B // ...

commutes, i.e. dj+1
A ◦ f j+1 = f j ◦ djB ∀j ∈ Z.

It is easy to show that the class of morphisms contains identity and is closed under
composition. Therefore we can conclude:
Definition 1.2.4. The complexes of objects in A together with the morphisms of
complexes defined as above form a category, which we will call Kom(A ) .
A quick result is that the category of complexes of an abelian category is abelian,
too. Given a morphism f• : A• −→ B•, its kernel can be defined as the complex
(Kerf•)i = Ker(f i) (cokernel will be defined in an analogous way). An easy check
shows then that for every morphism f• as above, there is an isomorphism Kerf• ∼=
Cokerf•. Although, we are not interested in working with Kom(A ): the problem
is, we want to identify complexes with the same cohomology. We recall that the
cohomology of a complex A• is:

H i(A•) = KerdiA
Imdi−1

A

.

The cohomology of the complex 0• = (... −→ 0 −→ ... −→ 0 −→ ...) is obviously
zero for all integers, but the converse is not true: H i(A•) = 0 ∀i ∈ Z simply means
that the complex A• is exact, i.e. KerdiA = Imdi−1

A ∀i ∈ Z. Derived categories are
built in order to avoid this. Let us give a definition:
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Definition 1.2.5. Let f• : A• −→ B• be a morphism of complexes. Then f•

is a quasi-isomorphism (or, shortly, qis) if H i(f•) : H i(A•)
∼=−→ H i(B•) is an

isomorphism for all integers i.

What want to do is to invert formally qis’s or, in other words, localize the class of
morphisms with respect to the subclasses of qis’s. The process, though, is very long
and detailed, so we will just give the idea of what morphisms are. Let’s first give an
intermediate step, which will make everything work: to define the derived category
of A , we need to pass through the so-called homotopy category K(A ).

Definition 1.2.6. Let f•, g• : A• −→ B• be morphisms of complexes. Then f• and
g• are homotopically equivalent if for each i ∈ Z there exists a map hi : Ai −→ Bi−1

so that
f i − gi = hi+1 ◦ diA + di−1

B ◦ hi ,

as shown in the following diagram:

... // Ai−1 di−1
A //

f i−1
��
gi−1
��

Ai
diA //

f i

��
gi

��||

Ai+1 di+1
A //

f i+1
��
gi+1
��||

...

... // Bi−1
di−1
B

// Bi

diB

// Bi+1
di+1
B

// ... .

It’s easy to check homotopic equivalence is an equivalence relation.

So we can define the homotopy category in this way:

• Ob(K (A )) = Ob(Kom(A )),

• ∀A,B ∈ K (A ) , HomK (A )(A,B) = HomKom(A )(A,B)/ ∼

where ∼ is homotopic equivalence. We need to pass through homotopy category
because we will ask any of the diagrams we are going to introduce to commute up to
homotopy. Let us now define the derived category. The objects of D(A ) are exactly
the same objects of Kom(A ) and K (A ), i.e. the complexes of A . To describe
the class of morphism, we need to consider that, if qis’s are to be considered as
isomorphisms, any morphism A• −→ B• should count as a morphism C• −→ B•, if
C• −→ A• is a qis. Therefore, given any two objects A•, B• ∈ D(A ), a morphism
between A• and B• is an equivalence class of diagrams of this type:

C
qis

��~~~~~~~~

  @@@@@@@@

A B

where two such diagrams are equivalent if there exists a third commutative (note:
in K (A )!) diagram of this type:
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C0

~~||||||||

  BBBBBBBB
qis

��

C1
qis

~~}}}}}}}

**VVVVVVVVVVVVVVVVVVVVVVV C2
qis

ttiiiiiiiiiiiiiiiiiiiiiii

!!CCCCCCCC

A B .

It is easy to check that the one defined above is actually an equivalence relation.
Now we need to define the composition of two morphisms, and verify that identity
is a morphism, and the composition is associative. Given two morphisms, between
respectively A•, B• and C• in A , the composition is defined as a diagram:

C0
qis

~~||||||||

  BBBBBBBB

C1
qis

~~}}}}}}}

!!BBBBBBBB C2
qis

}}||||||||

!!CCCCCCCC

A B C .

Associativity comes from the fact that everything commutes in K (A ), while it is
obvious that identity is a morphism (take B = A, and C quasi-isomorphic to A: this
will work).
Now, the problem is: the derived category D(A ), where A is abelian, is in general
not abelian itself. Let us consider the “queen” of abelian categories (thanks to
Mitchell’s embedding theorem), i.e. Ab= {abelian groups}. Proposition 1.1.4.
tells us that if D(Ab) were triangulated and abelian, then it would be semisimple.
We will later prove that the derived category of an abelian category has a natural
triangulated structure, so it suffices to show that it is not semisimple in order to prove
that it is not abelian. First notice that there is a canonical embedding Ab ↪→ D(Ab)
which is fully faithful, so it suffices to find a short exact sequence which doesn’t split
in Ab to prove that D(Ab) is not semisimple. But there’s plenty of them: think,
for example, to Z ·2−→ Z −→ Z2. Therefore, we have found a convincing example of
the fact that the derived category of an abelian category is in general not abelian.
We will now give a natural triangulated structure on D(A ) and later, using Propo-
sition 1.1.4, we will be able to show that it is not abelian. To give a triangulated
structure, we need first of all to give an additive equivalence [1] : D(A ) −→ D(A ).
Let us give a definition:

Definition 1.2.7. Let A• ∈ D(A ) be a complex. Then we define:

(A•[k])i := Ai+k ; diA[k] := (−1)kdi+kA

and, if f• : A• −→ B• is a morphism of complexes, we set

f [k] : A• −→ B• , f [k]i := f i+k.

It is easy to verify that the one defined above is actually an equivalence: an explicit
inverse is given by [−1] : D(A ) −→ D(A ) , (A•[−1])i = Ai−1, so we can generalize
the definition above to k ∈ Z.
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Definition 1.2.8. Let f• : A• −→ B• be a morphism in the derived category.
Then the mapping cone of f• is the complex C(f•), where C(f•)i = Ai+1 ⊕Bi and

diC(f•) =
(
−di+1

A f i+1

0 diB

)
.

An easy computation shows that dC(f•), defined as above, is actually a complex
differential. There is a triangle:

A•
f•−→ B•

τ−→ C(f•) π−→ A•[1]

where the two maps π and τ are the obvious ones: τ i : Bi −→ C(f•)i = Ai+1 ⊕Bi

is the canonical immersion, while π : C(f•)i = Ai+1 ⊕ Bi −→ (A•)i = Ai+1 is the
projection on the first factor. We can now define the class of distinct triangles:

Definition 1.2.9. A distinct triangle in D(A ) is a triangle which is isomorphic to
a triangle of the form A•

f•−→ B•
τ−→ C(f•) π−→ A•[1].

We should check that this one actually defines a class of distinct triangle, i.e. that
the four axioms of the triangulated structure are verified; this would lead to the
result that the natural shift functor together with the class of DT defined above is
a triangulated structure over D(A ). Nevertheless, the needed check-work is long
and not so useful to understand what will come later, so we refer to literature (for
example, Schapira-Kashiwara give a very detailed proof of it).





Chapter 2

Stability on triangulated and
abelian categories

2.1 Stability functions on abelian categories
Let us recall a definition:

Definition 2.1.1. Let A be an essentially small abelian category. The Grothendieck
group K(A ) of A is the abelian group generated by isomorphism classes of objects
of A , with relations of the form [B] = [A] + [C] whenever 0 −→ A −→ B −→ C is a
short exact sequence in A .1 Its positive cone K>0(A ) consists of all the isomorphism
classes of those elements of A which are not isomorphic to the zero object.

We are now ready to give the central definition:

Definition 2.1.2. A stability function Z on an abelian category is a group homo-
morphism:

Z : K(A ) −→ C

∪ ∪

K>0(A ) −→ H

so that the positive cone K>0(A ) is mapped into the upper half complex plane
H = {reiπφ | r ∈ (0,+∞), φ ∈ (0, 1]}. The image of the isomorphism class of any
nonzero object 0 6= E ∈ A can therefore be written as Z(E) = m(E)eiπφ(E), where
m(E) is called mass of E, while φ(E) = 1

πargZ(E) is called phase of E.

Given a stability function on A , we are ready to give the notion of semistable and
stable objects.

Definition 2.1.3. Let Z : K(A ) −→ C be a stability function on A . A nonzero
object 0 6= E ∈ A is called Z - semistable (or simply semistable, dropping the
stability function when there is no confusion) if for any F ⊂ E subobject of E,
φ(F ) ≤ φ(E), or equivalently for every quotient E → G, φ(E) ≤ φ(G). An object E
is called Z-stable (or simply stable) when both the inequalties in the definition are
strict.

1The Grothendieck group K(A ) of an abelian category A has nothing to do with its homotopy
category , even if we call them in the same way. From now on, unless differently specified, K(A )
will stand for the Grothendieck group of A .

13
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We can display this request as follows:

A first, very important property of semistable object, which we will try to reproduce
when we will be dealing with triangulated categories, is the following one:

Proposition 2.1.4. Let Z be a stability function on A , and let E,F be semistable
with respect to Z. If HomA (E,F ) 6= 0, then φ(E) ≤ φ(F ).

Proof. Suppose there exists a nonzero map f : E −→ F . Then there are two obvious
short exact sequences:

0 −→ Kerf −→ E → Coimf −→ 0 ,

0 −→ Imf −→ F −→ Cokerf −→ 0 .

Now, E is semistable, Kerf ∈ E is a subobject and E −→ Coimf is a quotient, so
it must be φ(Kerf) ≤ φ(E); analogously φ(Imf) ≤ φ(F ) ≤ φ(Cokerf). But A is an
abelian category, so Imf ∼= Coimf . It follows that φ(E) ≤ φ(Coimf) = φ(Imf) ≤
φ(F ).

Let us now introduce a filtration which will allow us to decompose in some sense
non-semistable objects into semistable factors.

Definition 2.1.5. Let E ∈ A be a nonzero object, and let Z be a stability condition
on A . The Harder-Narasimhan filtration of E (shortly, H-N) with respect to Z is:

0 = E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = E

such that for each j = 0, ..., n:

1. the quotient Fj := Ej�Ej−1 is Z-semistable;

2. The phases φ(F1) > ... > φ(Fn) decrease.

A stability condition Z is said to have the H-N property if each nonzero object
possesses the H-N filtration with respect to Z.

Proposition 2.1.6. Let E ∈ D be nonzero. Then, the Harder-Narasimhan filtration
of E, if exists, is unique.
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Proof. Assume that

E• = {0 = E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = E}

with quotients Fi, and

E′• = {0 = E′0 ⊂ E′1 ⊂ ... ⊂ E′m−1 ⊂ E′m = E}

with quotients F ′i are two Harder-Narasimhan filtrations of E. We can assume,
without any loss of generality, that φ(E′1) ≥ φ(E1). Let j be minimal such that
E′1 ⊂ Ej . Then the map

E′1 ↪→ Ej −→ Ej�Ej−1 = Fj

is non trivial, because E′1 6⊂ Ej−1. Then, by the previous proposition, φ(E′1) ≤ φ(Fj),
because they are both semistable (notice that E′1 ∼= F ′1). But we assumed that
φ(E1) ≤ φ(E′1), so φ(E1) = φ(F1) ≤ φ(Fj), which is an absurd because the phases
of semistable factors in the Harder-Narasimhan filtration strictly decrease. The
only possibility is that Fj = F1, i.e. j = 1. Therefore E′1 ⊂ E1, so it must be
φ(E′1) ≤ φ(E1). This means that we can repeat the same argument by simply
switching E• and E′•, and we will find E′1 ∼= E1. We can repeat the same agument
for the HN filtration of E�E1, i.e. consider the quotient of E• and E′• by E1. We
will thus find that F2 := E2�E1 ∼= E′2�E1 =: F ′2. Iterating, we will get that n = m
and Fi ∼= F ′i for each i = 1, ..., n. This implies that E• = E′•.

The following result gives a sufficient condition for the existence of the HN-filtration.

Proposition 2.1.7. Let A be an abelian category, and let Z be a stability condition
on A . Suppose that:

1. Neither infinite chains of subobject ... ⊂ Ej ⊂ Ej+1 ⊂ ... such that φ(Ej) >
φ(Ej+1) for each j,

2. Nor infinite chains of quotients ... � Ej � Ej+1 � ... such that φ(Ej) >
φ(Ej+1) for each j

exist in A . Then Z has the H-N property.

Before proving the proposition, notice that condition 1) and condition 2) imply that
if E ∈ A is a nonzero object, then either E is semistable or there exist a semistable
subobject A ⊂ E such that φ(A) > φ(E), and a semistable quotient E −→ B such
that φ(E) > φ(B). In fact, suppose E is not semistable: then there is a nonzero
subobject F ⊂ E such that φ(F ) > φ(E). Now, if F is semistable we are done,
otherwise F has itself a nonzero subobject F ′ ⊂ F such that φ(F ′) > φ(F ) > φ(E).
Iterating, we find a chain of subobjects with decreasing phases. By condition 2)
this chain cannot be infinite, so after a finite number of steps we find a semistable
subobject A ⊂ E with φ(A) > φ(E). A similar argument shows the claim about
quotients.
We now give a definition which will be relevant in our proof:

Definition 2.1.8. Let E ∈ A be nonzero. A maximally destabilizing quotient for
E (shortly, mdq) is a quotient E −→ B such that if E −→ B′ is another quotient
for E, then
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• φ(B′) ≥ φ(B);

• φ(B′) = φ(B) iff E −→ B′ factors through E −→ B:

E //

��

B
	

}}
B′ .

Roughly speaking, what we are looking for is the quotients with smaller phase and,
amongst them, the minimal one. Let us now notice something about mdqs:

1. Mdq is unique up to isomorphism: if E −→ B and E −→ B′ are both mdqs, of
course φ(B) = φ(B′) and by definition E −→ B′ factors via B and viceversa;
this means that we have

E
α //

γ

66B
β // B′

E
γ //

α

66B′
δ // B

so β ◦ α = γ, δ ◦ γ = α; therefore δ ◦ β ◦ α = α, β ◦ δ ◦ γ = γ and finally
δ ◦ β = IdB, β ◦ δ = IdB′ because γ and α are both epimosphisms.

2. If E ∈ A is semistable, then E Id−→ E is a mdq for E. This simply follows
from the definition: if E −→ B is a quotient for E, then φ(B) ≥ φ(E) because
of the semistability of E.

3. If E −→ B is a mdq for E, then φ(B) ≤ φ(E), and φ(B) = φ(E) means
E semistable. In fact, E Id−→ E is a quotient, so because of mdq property
φ(B) ≤ φ(E), but if E is not semistable, then there will esist a quotient of E,
let’s say E −→ B′ with a strictly smaller phase; then φ(B) ≤ φ(B′) < φ(E).

4. If E −→ B is a mdq for E, then B itself is semistable: in fact any quotient
B −→ B′ for B is also a quotient for E, by composition; then, φ(B′) ≥ φ(B)
by definition of mdq.

We are now ready to prove proposition 2.1.7 .

Proof. STEP 1 We will show that any nonzero object has an mdq. First note that
it is enough to check the mdq condition just on semistable quotients. In fact,
if E −→ B′ is a quotient and B′ is not semistable, then for what we said above
there exists a semistable quotient B′ −→ B′′ such that φ(B′′) ≤ φ(B′); B′′ is,
by composition, a quotient for E, too, so if φ(B) ≤ φ(B′′), then in particular
we will have φ(B) ≤ φ(B′). Let us consider a nonzero object E ∈ A . If E
is semistable, then E possessed a mdq for what said above, i.e. E Id−→ E. If
E is not semistable, then there will exist a semistable subobject A ⊂ E with
φ(A) > φ(E), as we already noticed. We can complete the inclusion morphism
A ↪→ B to a short exact sequence:
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0 −→ A −→ E −→ E′ −→ 0 ,

with phases in decreasing order, i.e. φ(A) > φ(E) > φ(E′).2 We claim that a
mdq for E′ is a mdq for E. Let us show this. Suppose that E′ −→ B is a mdq
for E. Then E −→ B is a quotient, and we need to check the mdq condition.
Take another quotient E −→ B′, with B′ semistable (this will do because of
what we said at the beginning of the proof). Suppose that φ(B′) ≤ φ(B). We
have a commutative diagram:

0 // A //

	

��@@@@@@@@ E //

��

E′ // 0

B′ ,

where the arrow A −→ B′ is just the composition of A −→ E and E −→ B′.
We have φ(E′) ≤ φ(B) because E′ −→ B is a mdq, φ(B) ≥ φ(B′) for what
we have just supposed, and φ(A) > φ(E) > φ(E′), therefore, reading the
long chain of inequalties, we get that φ(A) > φ(B′). But A and B′ are both
semistable, then HomA (A,B′) = 0. This means that the composition of
A −→ E and E −→ B′ must be zero, therefore, because of the universal
property of the kernel, the arrow E −→ B′ factors through E′:

0 // A //

	

  @@@@@@@@ E //

��

E′ //

~~

0

B′ .

Thus, E′ −→ B′ is also a quotient for E′: then, by definition of mdq, we have
that φ(B) ≤ φ(B′). But we supposed that φ(B) ≤ φ(B′), then φ(B) = φ(B′).
So, E −→ B is a mdq. We can now replace E by E′ and repeat the argument:
if E′ is semistable, the proof ends, otherwise there is another short exact
sequence like the one we built up for E. Iterating, we find a chain of quotients
with descending phases: this process must end by condition 2), then after a
finite number of steps we will find a semistable object B:

E −→ E′ −→ ... −→ E(n) −→ B

which will be a mdq for E(n). But, for what we proved above, a mdq for E(n)

is also a mdq for E(n−1) and therefore, iterating, a mdq for E.

STEP 2 We will now build explicitely the H-N filtration. Let E be a nonzero
object. If E is semistable, the H-N filtration of E is 0 ⊂ E. Else, because
of Step 1, E possesses a mdq E −→ B with φ(B) < φ(E). We complete the
quotient map to a short exact sequence:

2It is obvious that φ(E) > φ(E′): within the Grothendieck group K(A ) any short exact sequence
splits, so [E] = [A] + [E′]. Moreover, Z is an additive group homomorphism, so we will have
Z(E) = Z(A) + Z(E′): this means that the phase of E ranges between the phases of A and E′
respectively.
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0 −→ E′ −→ E −→ B −→ 0

with phases φ(E′) > φ(E) > φ(B). Now, let us suppose that E′ −→ B′ is
a mdq. We can complete this quotient map, too, to a short exact sequence
0 −→ K −→ E′ −→ B′ −→ 0; therefore we have a diagram:

0

��

0

��
0 // K // E′ //

��

B′ //

��

0

0 // K // E //

��

Q //

��

0

B

��

B

��
0 0

where E −→ Q completes the inclusion map K −→ E (K is a subobject of
E′ which is a subobject of E itself) to a short exact sequence. All the rows
and the first two columns are exact and, using some homological algebra, it
is easy to show that the third column is exact, as well. Now, E −→ Q is
a quotient of E, so φ(Q) ≥ φ(B) because E −→ B is a mdq, and it cannot
be φ(Q) = φ(B) because this would mean that E −→ Q factors via B, i.e.
E −→ B −→ Q. But the diagram tells us that E −→ B factors via Q, so we
would have Q ∼= B and B′ ∼= 0, which is absurd because we assumed B′ to
be a mdq for E′. Therefore φ(Q) > φ(B) and, by the exactness of the last
column, φ(B′) > φ(B). We have a chain of three subobjects:

K ⊂ E′ ⊂ E

with semistable quotients E′�K = B′ and E�E′ = B such that φ(B′) >
φ(B). We can now replace E by E′ and E′ by K and iterate until we find
a semistable object, i.e. in the diagram above this happens when B′ ∼= E′

and K = 0 (we are sure to find such a situation after a finite number of steps
because of condition 1) ). Therefore, we can rename objects simply setting
E′ = En−1, K = En−2, B = Fn, B

′ = Fn−1 and so on. At the end, we will
have:

0 ⊂ E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = E

with Ej�Ej−1 = Fj and φ(Fj) > φ(Fj+1) for all j. This is precisely the H-N
filtration of E.
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2.2 t-structures on triangulated categories

In the first section we have seen that the concept of stability function on an abelian
category arises in a quite natural way, and we would now like to weaken this
construction in order to make it adapt to an arbitrary triangulated category. A few
problems arise immediatly, though: we cannot give a straightforward definition of
semistable object, which strongly involves the ideas of subobject and quotient in
abelian categories. We need therefore to replace the partial ordering on objects,
given by inclusion, with something else. We will see that a key role in the machinery
which will allow us to solve this problem is played by t-structures, which we are now
going to introduce. Let us start with a definition:

Definition 2.2.1. Let D be a triangulated category. A t-structure on D is given
by a full additive subcategory F ⊂ D which verifies the following conditions:

1. F [1] ⊂ F (i.e., F is closed under positive shifts);

2. for each nonzero object E ∈ D there exists a triangle F −→ E −→ G where
F ∈ F , G ∈ F⊥ and F⊥ := {G ∈ D | HomD(F,G) = 0 ∀F ∈ F}. (i.e., the
category F decomposes nonzero objects).

Let us give a basic example:

Example 2.2.2. Let D = D(A ) be the derived category of an abelian category.
There exists on D a trivial t-structure, which is given by

F := {A• ∈ D(A ) | H i(A•) = 0 ∀i > 0} ,

i.e., F consists of the complexes whose cohomology is concentrated in negative
degree. The category F is obviously closed under positive shift (recall that what we
actually do is moving backward the whole complex, so if the cohomology of A• is
zero from degree one on, then the cohomology of A•[1] will be zero from degree zero
on), and its orthogonal is given by:

F⊥ := {A• ∈ D(A ) | H i(A•) = 0 ∀i < 1},

i.e., the complexes whose cohomology is concentrated in strictly positive degree.

Definition 2.2.3. Let F be a t-structure on D . The heart3 of F is the subcategory

H := F ∩F⊥[1]

Example 2.2.4. Consider the trivial t-structure on the derived category D(A ) of
an abelian category A (Example 2.2.2). Then, its heart is:

H = F∩F⊥[1] = {A• ∈ D(A ) |H i(A•) = 0 ∀i > 0}∩{A• ∈ D(A ) |H i(A•) = 0 ∀i < 0} =
3The category H is defined as the intersection of two subcategories. Now, it is a very controversial

point to define what intersection means when we are dealing with classes instead of sets (we didn’t
assume our category to be essentially small), and it ought to be clarified. This one is an example of
how unstable and in fieri the formalization of the whole theory is.
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= {A• ∈ D(A ) | H i(A•) = 0 ∀i 6= 0} ∼= A

which gives us a canonical way to embed an abelian category in its derived category:
as the heart of the trivial t-structure.
Definition 2.2.5. A t-structure F on D is bounded if

D =
⋃
i,j∈Z

F [i] ∩F⊥[j]

or, equivalently, if F is the closed-extension4 category generated by {H [j]}j∈Z.
Example 2.2.6. Note that, in the case of Example 2.2.2., the trivial t-structure is
not bounded. In fact, this would be equivalent to ask any complex to have nonzero
cohomology just inside a bounded interval of integer values. As we already know, this
condition is not always satisfied. Nonetheless, if we consider the trivial t-structure
restricted to the bounded derived category, what we obtain is actually a bounded
t-structure.
Let us now prove a result which will show us a nice way to reproduce what we have
done for abelian categories.
Proposition 2.2.7. Let D be a triangulated category, and let H be an additive full
subcategory. Then H is the heart of a bounded t-structure on D if and only if the
following conditions hold:

1. If we consider any two integers k1 > k2 ∈ Z, then HomD(A1[k1], A2[k2]) = 0
for all A1, A2 ∈H ;

2. For each nonzero object E ∈ D there exist a finite sequence of decreasing
integers k1 > ... > kn and a collection of distinct triangles:

0 = E0 // E1 //

~~}}}}}}}}
E2 //

~~}}}}}}}}
... // En−1 // En = E

{{vvvvvvvvv

A1

cc

A2

``

An

bb

where Aj ∈H [kj ] for all j = 1, ..., n.

Before proving the proposition, we will need a few lemmas:
Lemma 1 If C ⊂ D is an extension-closed subcategory, then all its shifts are
extension-closed.

Proof. Consider the following DT:

A −→ E −→ B
+1−→

with A,B ∈ C [i], E ∈ D . Then, using the fact that the shift functor and its inverse
are equivalences, we get that the triangle A[−i] −→ E[−i] −→ B[−i] +1−→ is distinct,
too. Now, A[−i] and B[−i] are in C , therefore E[−i] is in C , too, because C is
extension-closed. But then E is in C [i].

4We say that a category C is the extension-closed category generated by a collection of categories
Aj if

⋃
Aj ⊂ C and C is closed with respect to distinct triangles, i.e. if whenever any two vertices

of a distinct triangle are in C , so is the third.
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Lemma 2 If C ⊂ D is an extension-closed subcategory, then its orthogonal is
extension-closed, as well.

Proof. Take a DT:

A −→ E −→ B
+1−→

with A,B ∈ C⊥, E ∈ D , and let X be a nonzero object in C . By property 2, there
is a long exact sequence:

... −→ HomD(X,A) −→ HomD(X,E) −→ HomD(X,B) −→ ... .

Now, HomD(X,A) = HomD(X,B) = 0 by orthogonality, therefore HomD(X,E) = 0,
too. By the arbitrary choice of X ∈ C , we can conclude that E ∈ C⊥.

Proof. First suppose that H is the heart of a t-structure F on D .

1. The shift functor, its inverse and their powers are all equivalences; in particular,
they are fully faithful. Therefore, if A and B are in H :

HomD(A[k1], B[k2]) ∼= HomD(A[k1 − k2 − 1], B[−1]).

Now, k1 > k2, so k1 − k2 − 1 ≥ 0: it means that A[k1 − k2 − 1] is in F [n] for
some n ≥ 0. But F is closed under shift, therefore A[k1 − k2 − 1] is in F . On
the other hand, B is in H = F ∩F⊥[1], so B[−1] is in (F ∩F⊥[1])[−1] =
F [−1] ∩F⊥ ⊂ F⊥. Therefore B is in F⊥ and, by definition of t-structure,
HomD(A[k1 − k2 − 1], B[−1]) = 0.

2. Consider a nonzero object E ∈ D . We want to build up the HN filtration of E.
First of all, notice that the boundedness of F implies that E ∈ F [i]∩F⊥[j] for
some i, j ∈ Z, then take E[−i−1] ∈ D . By definition of t-structure, there exists
a DT A −→ E[−i− 1] −→ B

+1−→ with A ∈ F , B ∈ F⊥. By the fact that the
shift functor is an equivalence, we get that the triangle A[i+1] −→ E −→ B[i+
1] +1−→ is distinguished. Now, E ∈ F [i] by hypotesis, A[i+2] ∈ F [i+2] ⊂ F [i],
the triangle E −→ B[i + 1] −→ A[i + 2] is distinguished by the first axiom,
therefore, using the fact that F is extension-closed (and so are all its shift by
Lemma 1), we can conclude that B[i+ 1] ∈ F [i]∩F⊥[i+ 1] = H [i]. We have
so found a map E −→ Bi, where Bi := B[i+ 1] ∈H [i] and, renaming objects
in a suitable way, we have a DT:

En−1 −→ En −→ An .

We can now replace En with En−1 and iterate. Eventually, we find a filtration:

... // En−3 // En−2 //

{{wwwwwwwww
En−1

{{wwwwwwwww
// En = E

{{vvvvvvvvv

An−2

cc

An−1

cc

An

bb
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where Aj ∈H [kj ] for all j = 1, ..., n.
What we need to check is:

(a) that the filtration is actually bounded, i.e. that after a finite number of
steps we actually find zero;

(b) that k1 > ... > kn.

Consider the DT we had at the beginning:

A′ −→ E −→ B′
+1−→

(of course A′ = A[i + 1], B′ := B[i + 1]) where we supposed E to be in
F [i] ∩F⊥[j]. Notice that if E is nonzero the condition i ≤ j − 1 must hold:
indeed, suppose that As ∈H [ks], s = 1, ..., n are the semistable quotients in
the HN filtration of E, then we know that:

F [i] = {E ∈ D | ks ≥ i ∀s = 1, ..., n}

F⊥[j] = {E ∈ D | ks ≤ j − 1 ∀s = 1, ..., n}

therefore, for E to be in F [i] ∩F⊥[j], it must be i ≤ ks ≤ j − 1. We want to
show that A′ ∈ F [i′] ∩F⊥[j′] with j′ ≤ j, i′ > i. In fact, we had found that
B′ ∈ F⊥[i + 1] (so B[−1] ∈ F⊥[i]), E ∈ F⊥[j], so recalling that i ≤ j − 1,
i.e. i < j we get a DT, B′[−1] −→ A′ −→ E

+1−→ where both B′[−1] and A′
are in F⊥[j] by Lemma 3. Moreover, A′ = A[i + 1], so A′ ∈ F [i + 1], so
i′ = i+ 1 > i. Therefore the quotient of A′ is in H [i′] with i′ > i, and after
a finite number of steps we find zero because at a certain point the object
completing the triangle will be in F [i(n)] ∩F⊥[j(n)] with i(n) ≥ j(n) − 1.
For the converse, suppose there exists a full additive subcategory which verifies
conditions 1) and 2). Define F as the extension closed subcategory generated
by {H [j], j ∈ Z≥0}. Moreover, the category F⊥ will be the extension closed
subcategory generated by {H [j], j ∈ Z<0}: in fact, the quotients in the HN
filtration of an object F ∈ F will all be in negative shifts of H , while the
quotients in the HN filtration of an object G ∈ F⊥ will all be in positive
shifts of H ; therefore there can be no nonzero map between F and G because
if it existed, it would exist a nonzero map from the quotients of F to the
quotients of G, as well, and we know it can’t be by condition 1). This proves
that ECS〈H [j], j ∈ Z<0〉 ⊂ F⊥. For the reverse inclusion, consider an object
E 6∈ ECS〈H [j], j ∈ Z<0〉. Then, if the HN filtration is as in condition 2),
k1 must be positive. This means that A1 ∈ F and there is a nonzero map
between A1 and E (the composition of the horizontal arrows). Therefore, E
cannot be in F⊥. Let us now prove that F , as defined above, is a t-structure
on D (the boundedness comes straight from the definition). It is obvious that
F is closed under positive shift: in fact if E is in F [1], then E[−1] ∈ F , so
it has a HN filtration whose semistable quotients are in positive shifts of the
heart . Let
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En−1 −→ E[−1] −→ An
+1−→

be the last triangle of this filtration, with An ∈H [kn], for some kn ≥ 0. Then,
by shifting, we get En−1[1] −→ E −→ An[1] +1−→. Now, An[1] ∈H [kn+1] ⊂ F ,
because kn + 1 is obviously positive. So, by the fact thet F is extension-closed,
it suffices to prove that En−1[1] ∈ F to show that E is in F , too. Consider
the last triangle but one:

En−2 −→ En−1 −→ An−1
+1−→

where An−1 ∈H [kn−1], kn−1 > 0. Again, by shifting we find that En−2[1] −→
En−1[1] −→ An−1[1] +1−→, so An−1[1] ∈H [kn−1] ⊂ F and it suffices to prove
that En−2[1] ∈ F to show that En−1[1], and therefore E, as well, are in F .
Going backwards this way we reach the first triangle:

E1 ∼= A1 −→ E2 −→ A2
+1−→,

where A1 ∈H [k1], A2 ∈H [k2] with k1, k2 > 0 By shifting, we get A1[1] −→
E2[1] −→ A2[1] +1−→. But A1[1] ∈ H [k1 + 1] and A2 ∈ H [k2 + 1] are
both in F , so E2[1] is in F , as well. But then, considering the triangle
E2[1] −→ E3[1] −→ A3[1] +1−→ we get that E3[1] is in F and, proceeding this
way, E is in F , too. Therefore F is closed under shift. Moreover, to build
up the DT F −→ E −→ G

+1−→ for some E ∈ D , F ∈ F , G ∈ F⊥ it suffices
to look at the HN filtration of E: if the quotients are all in positive shifts of
H , then E is in F and the DT E −→ E −→ 0 +1−→ is as above; if instead
the quotient of E are all in negative shifts of H , then E is in F⊥ and the
DT 0 −→ E −→ E

+1−→ meets the requirements we need; if finally some of the
quotients are in negative shifts while the others are in positive shifts of H , there
is a little bit of work to do. Suppose ki ≥ 0, ki+1 < 0. This means that Ei ∈ F .
Consider the map Ei −→ E. We want to show that its cone, which we call
E′, is in F⊥. Now, consider the composition Ei −→ Ei+1 −→ Ei+2. The cone
of Ei −→ Ei+1 is Ai+1 ∈H [ki+1] ⊂ F⊥ because we supposed ki+1 < 0, and
the same holds for the cone of Ei+1 −→ Ei+2, which is Ai+2 ∈H [ki+2] ∈ F⊥.
Therefore, the octahedron axiom shows us that:
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Ai+1 ∈ F⊥
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Ai+2 ∈ F⊥

+1

%%KKKKKKKKKK

therefore, by the fact that F⊥ is extension-closed, the cone C of the map
Ei+1 −→ Ei+2 is in F⊥. Repeat the argument with the composition Ei −→
Ei+2 −→ Ei+3. Again, the cone of Ei −→ Ei+2 is in F⊥ because of what we
have just shown, and the cone of Ei+2 −→ Ei+3, which is Ai+3 ∈H [ki+3] is
in F⊥, too. Therefore, the cone of Ei −→ Ei+3 is the central vertex of a DT
whose extremal vertices are both in F⊥, so it is in F⊥, too. We can iterate
until we find:

Ei −→ En−1 −→ E.

The cone of Ei −→ En−1 is in F⊥ by induction, the cone of En−1 −→ E is in
F⊥, too, because it is An ∈H [kn], therefore by the octahedron axiom again
the cone of Ei −→ E, which we called E′, is in F⊥, as well.5

Notice that this result shows a sort of triangulated version of what happened in
abelian categories: if we think of the objects in the categories H [j] as the old
semistable objects, with new phases given by the j’s, we just get that there are no
nonzero morphisms between two semistable objects if the first one has a bigger phase,
and that any nonzero object possesses a Harder-Narasimhan filtration. However,
there is an important difference: here, the phases are indexed by integers, while in
abelian categories they were indexed by reals. Therefore, we need to “slice” further
our category. The tool which will allow us to do this is called, for obvious reasons,
slicing.

Definition 2.2.8. Let D be a triangulated category. A slicing on D is a collection
of full additive subcategories P(φ), φ ∈ R, such that the following conditions hold:

5Thanks to Donatella Iacono for helping me with this proof.
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a) P(φ+ 1) = P(φ)[1];

b) if A ∈P(φ), B ∈P(ψ), for some φ, ψ ∈ R, and φ > ψ, then Hom(A,B) = 0;

c) for each nonzero object E ∈ D there exist a finite sequence of decreasing reals
φ1 > ... > φn and a collection of distinguished triangles

0 = E0 // E1 //

~~}}}}}}}}
E2 //

~~}}}}}}}}
... // En−1 // En = E

{{vvvvvvvvv

A1

cc

A2

``

An

bb

where Ai ∈P(φi) ∀i = 1, ..., n.

Lemma 2.2.9. The Harder-Narasimhan filtration in c) is unique.

Proof. Fix a nonzero object E ∈ D . Suppose there are two such filtrations:

A1

{{

An−1

zz

An

||
0 = E0 // E1 //

``AAAAAAAA

... // En−2 // En−1 //

ddHHHHHHHHH
En = E

ddHHHHHHHHH

0 = F0 // F1 //

~~}}}}}}}}
... // Fm−2 // Fm−1 //

zzvvvvvvvvv
Fm = E

zzvvvvvvvvv

B1

cc

Bm−1

dd

Bm

bb

with Ai ∈P(φi) , φi > ... > φn and Bi ∈P(ψi) , ψi > ... > ψm.

STEP 1 Consider the minimum k for which the composition Ek −→ En −→ Bm is
zero (notice that the composition En−1 −→ En = Fm −→ Bm is zero for the
first property of distinguished triangles. ). We have that the following holds:

Ek

��|| !!CCCCCCCC

Fm−1 //

0
<<Fm // Bm

i.e., the map from Ek to Fm lifts to Fm−1. Therefore, we have a commutative
diagram:

Ek //

��

Ek+1 //

��

Ak+1
+1 //

��
Fm−1 // Fm // Bm

+1 // .
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The arrow Ek+1 −→ Fm is nonzero, because we supposed k to be minimum,
therefore the map Ak+1 −→ Bm is nonzero, as well. By the second condition
in the definition of a slicing, we get that if Ak+1 ∈ P(φk+1, Bm ∈ P(ψm),
then φn < ... < φk+1 < ψm. We can now repeat the argument by switching the
two filtration in order to find ψm < ... < ψj+1 < φn. Thus, the only possibility
is that k + 1 = m = n, i.e. m = n, k = n− 1 and φn = ψm.

STEP 2 Consider the following diagram:

En−1
i //

f

��

En // An
+1 //

��
Fm−1 //

g

OO

h

<<

Fm // Bm
+1 //

OO

(which is simply the diagram above, where k = n − 1 and we obtain the
parallel arrows by switching the two lines). Now, i ◦ g = h, h ◦ f = i, therefore
h◦f ◦g = h and symmetrically i◦g◦f = i. This implies that i◦(g◦f−Id) = 0
and h ◦ (f ◦ g − Id) = 0. Set p := g ◦ f − Id : En−1 −→ En−1, and consider
the following:

En−1

p

��

h̄

zz

0

""EEEEEEEE

An[−1] // En−1
i // En

we get that there is a map En−1
h̄−→ An[−1]. But En−1 ∈ P(> φn) and

An[−1] ∈P(φn − 1), therefore h̄ = 0. But then p = 0 and g ◦ f = Id. We can
do the same with h ◦ (g ◦ f − Id), and we will get En−1 ∼= Fm−1. The assertion
then follows by simply iterating.

Definition 2.2.10. Let E be a nonzero object of D . Then, if the H-N filtration of
E is

0 = E0 // E1 //

~~}}}}}}}}
E2 //

~~}}}}}}}}
... // En−1 // En = E

{{vvvvvvvvv

A1

cc

A2

``

An

bb

we can define the maximal and the minimal phase of E, i.e.:

φ+
P(E) = φ1

φ−P(E) = φn

respectively. We will often write φ±(E) omitting the slicing when there is no
confusion.
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Notice that maximum and minimum phase of a nonzero object are well defined
because of the uniqueness of the Harder-Narasimhan filtration, and that φ−P(E) ≤
φ+

P(E) (the equality holds if and only if E is in P(φ), where φ = φ+
P(E) = φ+

P(E)).
Definition 2.2.11. We define the categories P(I), where I is an interval whose
length is less or equal than 1, as the extension closed category generated by
{P(φ)}φ∈I . In particular, we have:

P((a, b)) = {0 ∈ D} ∪ {E ∈ D s.t. a < φ−P(E) ≤ φ+
P(E) < b}

Lemma 2.2.12. If E,F ∈ D are nonzero and E ∈ P(> φ), F ∈ P(< ψ) where
φ ≥ ψ, then Hom(A,B) = 0.
Proof. Call Bi, i = 1, ...,m the semistable factors in the HN filtration of F , ψi their
phases and consider the integer n =length of the H-N filtration of E, which is finite
and well defined. We make induction on n:

n = 1. If n = 1, then φ+(E) = φ−(E) = φ(E) and E ∈P(φ(E)). Suppose there is
a map E −→ F . Then, by composition, there is also a map E −→ F −→ Bm
(the last semistable factor). But Bm is in P(ψm), and ψm < ψ1 < ψ ≤ φ(E),
therefore, by definition of slicing, this composition must be zero. We thus have
the following diagram:

E

��

0

  BBBBBBBB

||
Fm−1 // F // Bm

+1 //

which shows that the map E −→ F lifts to Fm−1. Now, if the map E −→ Fm−1
is zero, the proof is finished, because it means that the map E −→ F is zero,
as well. if it is not zero, on the other hand, we can iterate the argument in
this way:

E

��

0

$$IIIIIIIIII

zz
Fm−2 // Fm−1 // Bm−1

+1 //

and find a map E −→ Fm−2. If this map is zero, the proof is finished, for
would mean that the map E −→ Fm−1 and therefore the map E −→ F were
both zero. If it is not zero, we iterate again. At the end, we will find such a
diagram:

E

��

0

!!BBBBBBBB

}}
B1 // F2 // B2

+1 //

Now, B1 is in P(ψ1), where ψ1 < ψ ≤ φ(E). Therefore the map E → B1 is
zero. But it means that E −→ F2 is zero, too and, going backwards, also the
map E −→ F .
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n > 1. Suppose there exists f : E −→ F :

F

0 = E0 // E1 //

~~}}}}}}}}
E2 //

~~}}}}}}}}
... // En−1 //

g

55kkkkkkkkkkkkkkkkkk
En = E

{{vvvvvvvvv

f

OO

A1

cc

A2

``

An

bb

where g is simply the composition En−1 −→ E and E f−→ F . By induction,
g = 0.Therefore there is a commutative diagram:

En−1 //

��

E //

f
��

An
+1 //

h
��

0 // F
Id // F // .

But An ∈ P(φn), and φn = φ−P(A) > φ ≥ ψ, therefore h = 0 and f = 0 by
commutativity.

Lemma 2.2.13. Let P be a slicing on D and let I be an interval with lengh `(I) ≤ 1.
Suppose there exists a DT

A −→ E −→ B
+1−→

with A,E,B ∈P(I). Then:

1. φ+(A) ≤ φ+(E) ;

2. φ−(E) ≤ φ−(B)

Proof. Suppose I = [t, t + 1] for some t ∈ R6 and set φ = φ(A). By definition of
slicing, there exist an object A+ ∈ P(φ) and a nonzero map A+ −→ A (simply
look at the H-N filtration of A: A+ := A1, and the map is the composition of
the horizontal arrows). If we suppose that φ > φ+(E), then there are no nonzero
morphisms from A+ −→ E, therefore the following diagram commutes for some map
A+ −→ B[−1]:

A+

{{
f

��

0

  AAAAAAAA

B[−1] // A // E
+1 // ,

6Notice that we never use the actual length of the interval, so it is not restrictive to suppose it
to be exactly one.
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i.e., f factors via B[−1]. But, by assumption, B[−1] is in P(≤ t), so it must be
φ ≤ t, because otherwise the map A+ −→ B[−1] would be zero. But we have
supposed E to be in I, so φ+(E) ≥ t and φ > φ+(E), which is a contradiction.
Therefore, φ = φ+(A) ≤ φ+(E). The second equality follows by a similar argument
(just consider the minimum phase of B, and argue as above reverting all the arrows).

Remark 2.2.14. The subcategories P(> φ) and P(≥ φ) are closed under left shift
(recall that P(φ+ 1) = P(φ)[1] by definition of slicing), and it is very easy to verify
that they decompose objects: indeed, fix φ ∈ R and consider a nonzero E ∈ D . If
φ−(E) ≤ φ+(E) < φ, then the triangle 0 −→ E −→ E

+1−→ is distinct by the first
axiom and, of course, E ∈ P(≤ φ) and 0 ∈ P(≤ φ)⊥ = P(> φ). Similarly, if
on the other hand, φ < φ−(E) ≤ φ+(E), then the triangle E −→ E −→ 0 +1−→ is
distinguished by the first axiom, too, and as above E ∈ P(> φ) while 0 ∈ P(>
φ)⊥ = P(≤ φ). If, on the other hand, we have φ−(E) ≤ φ ≤ φ+(E), then the
proof is identical to the one for Proposition 2.1.4 (the part we apply octahedron
repeatedly). Indeed, if E 6∈P(> φ), E 6∈P(≤ φ), then in the HN filtration of E
some of the phases of the semistable quotients are greater than φ, the others are
lesser or equal than φ. Consider the maximum index i such that the semistable
quotient Ai ∈ P(φi) and φi > φ, and complete to a DT the map Ei −→ E. The
fact that its cone is in P(≤ φ) follows exactly as in Proposition 2.1.4 . Therefore,
the pair (P(> φ),P(≤ φ)) defines a t-structure for each φ ∈ R (obviously, the
same holds for the pair (P(≥ φ),P(< φ))). The hearts of these t-structures are
respectively:

H>φ = P(> φ) ∩P(> φ)⊥[1] = P(> φ) ∩P(≤ φ+ 1) = P((φ, φ+ 1]) ;

H≥φ = P(≥ φ) ∩P(≥ φ)⊥[1] = P(≥ φ) ∩P(< φ+ 1) = P([φ, φ+ 1)) .

and, conventionally, the heart of the slicing P is the category P((0, 1])
As we already know, the heart of a t-structure on a triangulated category is always
abelian. Therefore, for every φ ∈ R, the categories P([φ, φ+ 1)) and P((φ, φ+ 1])
are abelian subcategories. We now wonder if this holds for the subcategories P(I),
too, where I is an arbitrary interval. The answer is that these subcategories are in
general not abelian, but if `(I) ≤ I they are quasi-abelian. Recall first that if A is
an additive category and f ∈ HomA (A,B) , A,B ∈ A is a morphism, then f is
said to be strict if Imf ∼= Coimf . In an abelian category every morphism is clearly
strict. We are now ready to give the definition of quasi-abelian category.

Definition 2.2.15. Let A be an additive category. Then A is quasi-abelian if

1. for any morphism f ∈ Mor(A ) we have that Kerf,Cokerf ∈ Ob(A );

2. the class of strict epimorphism is closed under pullback and the class of strict
monomorphism is closed under pushout.

Notice that the existence of pullbacks and pushouts follows from the existence of
kernels and cokernels. Indeed, the first condition and the fact that A is additive
guarantee the esistence of equalizers and coequalizers: we recall that, given A,B



30 2. Stability on triangulated and abelian categories

in A and f, g ∈ HomA (A,B), the equalizer Eq(f, g) of f and g is a couple (E, eq)
where E ∈ Ob(A ) and eq ∈ HomA (E,A) such that for any couple (O,m) with
O ∈ Ob(A ), m ∈ HomA (O,A) and f ◦m = g ◦m, the morphism m factors through
eq, i.e. there exists m′ ∈ HomA (O,E) s.t. eq ◦m′ = m (to obtain the definition of
coequalizer simply revert all the arrows). It is very easy to show that, if A is additive
and the kernels and cokernels of f and g are in A , then Eq(f, g) = Ker(f − g). Now,
given X,Y, Z ∈ A , a couple of morphisms f, g:

X

f
��

Y g
// Z

and the projections pX , pY from the product X × Y on the two factors, there is a
diagram which is not commutative:

X × Y pX //

pY
��

X

f
��

Y g
// Z .

It is quite a standard exercise to show that pullback of X and Y over Z is simply
the triple, given by an object and two projection respectively on X and Y , which
makes the diagram commute, i.e. X ×Z Y = Eq(f ◦ pX , g ◦ pY ).

2.3 Stability conditions on triangulated categories

We are now ready to give the key definition.

Definition 2.3.1. Let D be a triangulated category. A stability condition on D
consists of a couple (Z,P) = σ, where:

1. Z is a group homomorphism Z : K(D) −→ C ,7

2. P is a slicing on D

such that any nonzero object in P(φ) for some φ ∈ R is sent by Z to a point whose
phase is exactly φ, i.e. Z(E) = m(E)eiπφ for some m(E) ∈ R>0.

The group homomorphism Z is called central charge of the stability condition, and
any nonzero E ∈ P(φ) for some φ ∈ R is said to be semistable of phase φ (the
stable object are just the simple ones).

Lemma 2.3.2. If σ = (Z,P) is a stability condition on a triangulated category D ,
then the subcategories P(φ) ⊂ D are abelian for each φ ∈ R.

7The definition of Grothendieck group for triangulated categories is very similar to the one for
abelian categories: the difference is just that we ask DTs instead of short exact sequences to split.
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Proof. The subcategory P(φ) is full in D , so in particular it is full in H :=
H>φ−1 = P((φ − 1, φ]), which we know to be abelian. It then suffices to show
that if E,F ∈P(φ) and f ∈ HomP(φ)(E,F ) ∼= HomH (E,F ) is a morphism, then
Kerf and Cokerf , which we know to be in H , are actually in P(φ). Take a
short exact sequence 0 −→ A −→ E −→ B −→ 0 in H : Lemma 2.2.13 tells us
that φ+(A) ≤ φ+(E) = φ and φ = φ−(E) ≤ φ−(B). But then φ−(B) must be
exactly φ, because the phases of nonzero object of H are upperly bounded by φ,
so φ−(B) = φ+(B) = φ and B ∈ P(φ). But then φ+(A) = φ−(A) = φ, because
the short exact sequences in the Grothendieck group split and Z is additive, so
Z(E) = Z(A) + Z(B). In particular, if f ∈ HomP(φ)(E,F ), with E,F ∈ P(φ),
there are two short exact sequences which are associated to f :

0 −→ Kerf −→ E −→ Coimf −→ 0

0 −→ Imf −→ F −→ Cokerf −→ 0 ,

therefore Kerf,Cokerf, Imf,Coimf are in P(φ). Moreover, Imf ∼=P(φ) Coimf
because they are isomorphic in H , which is abelian, and P(φ) ⊂H is full. Then
P(φ) is abelian, too.

Definition 2.3.3. The mass of E is:

mσ(E) =
∑
i

|Z(Ai)|

where the Ai’s are the semistable quotient in the H-N filtration of E. By the
triangular inequality we get:

mσ(E) =
∑
i

|Z(Ai)| ≥
∣∣∣∣∣∑
i

Z(Ai)
∣∣∣∣∣ = |Z(E)|.

Notation 2.3.4. Let σ = (Z,P) be a stability condition on D . We will sometimes
write φ±σ (E) for φ±P(E).

Proposition 2.3.5. To give a stability condition on a triangulated category D is
equivalent to giving a bounded t-structure on D and a stability function on its heart
with the Harder-Narasimhan property.

Proof. First suppose σ = (Z,P) is a stability condition on D . Then we already
know that the category P(> 0) defines a bounded t-structure on D , and that its
heart P((0, 1]) verifies the Harder-Narasimhan condition (remember Proposition
2.1.6: the boundedness conditions on phases make P((0, 1]) verify the hypotesis).
Conversely, let H be the heart of a bounded t-structure on D , and let Z be a
stability function on H with the H-N property. First notice that K(D) ∼= K(H ):
indeed, any class [E] ∈ K(D) can be written as the sum [E] = ∑[Ai], where the Ai’s
are the semistable quotient in the H-N filtration of E. The uniqueness of this sum
is given by the uniqueness of the H-N filtration. Therefore, the stability condition
Z : K(H ) −→ C automatically defines the central charge Z : K(D) −→ C of a
stability condition on D . The Z-semistable object define the slicing P: just set

P(φ)0<φ≤1 := {Z − semistable objects of phase φ}.
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Roughly speaking, we are choosing P so that H = P((0, 1]). Let us check it is
actually a slicing.

a) We set P(φ+ 1) := P(φ)[1] to extend the definition of P(φ) to any φ ∈ R, so
the first condition is automatically satisfied.

b) Take A,B in P(φ),P(ψ) respectively. We need to distinguish between two
cases:

1. φ, ψ are both in (n, n+ 1] for some n ∈ Z. Then A,B are in H [n], and
we have:

HomH [n](A,B) ∼= HomD(A,B) ∼= HomD(A[−n], B[−n]) ∼= HomH (A[−n], B[−n]) = 0

where the first and the third isomorphism hold because the subcategory
H and is full, the second because the shift and its inverse are autoequiv-
alences, and in particular fully faithful, while HomH (A[−n], B[−n]) = 0
because of the properties of stability functions on abelian categories.
Indeed, now A[−n] and B[−n] are “old style” semistable object (i.e.,
with respect to a stability function on an abelian category), so just con-
sider that the phase of A[−n] is greater than the phase of B[−n] (if
φ > ψ ∈ (n, n + 1], then obviously φ − n > ψ − n ∈ (0, 1]) and apply
Proposition 2.1.4.

2. φ ∈ (n, n + 1], ψ ∈ (m,m + 1] for some n > m. Then just apply
Proposition 2.2.7: H is the heart of a bounded t-structure on D , A ∈
H [n], B ∈H [m] with n > m, therefore condition 1) says exactly that
HomD(A,B) = 0.

c) We want to find the HN filtration of a nonzero E ∈ D . In order to do this, we are
going to combine the filtration we have inherited from Proposition 2.1.4 with the
HN filtration we have on H as an abelian category. Let Ai, i = 1, ..., n be the
factors of the Harder-Narasimhan filtration, i.e. Ai ∈Hki , k1 > k2 > ... > kn.
Each Ai, opportunely shifted, has a HN filtration, in the sense of abelian
categories, due to the stability function we have on H . Let 0 ⊂ Ai1 ⊂ ... ⊂
Aimi = Ai[−k˘i], where Aij�Ai,j−1 = Bij ∈ P(φij), φij ∈ (0, 1], be that
filtration. Thus we have

0 −→ A11[k1] −→ ... −→ A1m1 [k1] = A1 = E1.

If we set Fi := A1i[k1], i = 1, ...,m1 we find the first m1 factors of the HN
filtration. Its semistable factors are Bij [k1] ∈P(φij + k1). Now we need to go
on. By intuition, we would like to have something like the following:

E1 −→? −→ B21[k2] +1−→

i.e., an element whose quotient by E1 is exactly the first semistable quotient of
the Harder-Narasimhan filtration of A2[−k2], opportunely shifted. By intuition
again, it can be built as the cone of a map B21[k2 − 1] −→ E1 (notice that
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B21 ∼= A21). The first question which arises is: does such a map exist? It does:
indeed, consider the composition:

A21[k2] −→ A2[k2] −→ E[1],

where the first map is just the shifted inclusion A21 ⊂ A22 ⊂ ... ⊂ A2m2 = A2,
while the second one is the shift map in the second triangle of the HN filtration
of E we had by Proposition 2.1.4:

E1 −→ E2 −→ A2
+1−→ E1[1].

We have thus obtained a map A21[k2] −→ E[1] and, therefore, a map A21[k2−
1] −→ E. Calling Fm1+1 the cone of this map we find them1+1-factor. Now we
can iterate: define Fm1+i as the cone of the map A2i[k2 − 1] −→ E1, which, as
above, is the composition of the shifted inclusion A2i ⊂ A2,i+1 ⊂ ... ⊂ A2 and
the shift map A2 −→ E[1]. Now, a deus ex machina is necessary to show us that
everything works: we apply the octahedron axiom to the map A21[k2 − 1] −→
E1, which is itself the composition A21[k2 − 1] i1−→ A22[k2 − 1] i2−→ E1. Look
what happens:

B22[k2 − 1]

+1
77oooooooooooo

��????????????????

A22[k2 − 1]

C(i1)

==zzzzzzzzzzzzzzzzz

i2
''PPPPPPPPPPPPP

Fm1+1

��7777777777777777

+1
44jjjjjjjjjjjjjjjjjj

E1
C(i2)

**UUUUUUUUUUUUUUUUUUUUUU

C(i2◦i1)
88qqqqqqqqqqq

A21[k2 − 1]

i1

??~~~~~~~~~~~~~~~~~~~

i2◦i1

33ggggggggggggggggggggggggggg
Fm1+2

+1

""FFFFFFFFF

the triangle B22[k2 − 1] −→ Fm1+1 −→ Fm1
+1−→ is exact, so we get that the

cone of the map Fm1+1 −→ Fm1+2 is exactly B22[k2] ∈P(φ22 +k2)! The same
argument applied to the map A2i[k2−1] −→ E1, considered as the composition
A2i[k2 − 1] −→ A2,i+1[k2 − 1] −→ E1, shows us that the quotient are exactly
the B2i[k2 − 1]’s. An iteration on the Aj ’s, j = 3, ..., n, builds up the HN
filtration we are looking for, completing thus the proof.
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Remark 2.3.6. Notice that what the Proposition states implies that a stability
condition can be give either as the pair (Z,P) of Definition 2.3.1, or as a pair
(Z,A ), where Z is the usual group homomorphism and A is the heart of a bounded
t-structure on the category D , and the objects belonging to A are sent by Z to the
upper-half plane H. This will be particularly useful in the following chapters, when
we will build stability conditions on the derived category of a K3 surface.
Let us give an example of how this proposition can be applied.

Example 2.3.7. Let X be a projective nonsingular curve over an algebraically
closed field k, with chark = 0. We already know there is a “classical” stability
function on A = Coh(X)8, i.e., for each nonzero F ∈ A , we set:

Z(F ) := −deg(F ) + irank(F ) .

By applying the proposition, we get a stability condition on Db(A ), where A is the
heart of the trivial t-structure.

2.4 The space of stability conditions
Let D be a triangulated category.

Definition 2.4.1. A slicing P on a triangulated category D is said to be locally
finite if there exists η ∈ R>0 such that for each t ∈ R the quasi-abelian category
P((t− η, t+ η)) ⊂ D is of finite length9. A stability condition σ = (Z,P) is locally
finite if the slicing P is.

Definition 2.4.2. We define the following sets:

Slice(D) = {locally finite slicings on D},

Stab(D) = {locally finite stability conditions on D}.

We will later notice that almost everything we do works well even without the locally
finiteness, but it is useful to avoid pathological cases. What we want to do is to give
the set Stab(D) the structure of a topplogical space. First of all, we will need to
consider the inclusion:

Stab(D) ⊂ HomZ(K(D),C)× Slice(D).

Put a generalized metric on the set Slice(D) by setting

d(P,Q) := sup
06=E∈D

{|φ−P(E)− φ−Q(E)|, |φ+
P(E)− φ+

Q(E)|} ⊂ [0,+∞] .

Let us check it is actually a generalized metric:

1. d(P,Q) = 0 ⇒ |φ−P(E) − φ−Q(E)| = |φ+
P(E) − φ+

Q(E)| = 0 for all nonzero
E ∈ D ⇒ φ−P(E) = φ−Q(E) , φ+

P(E) = φ+
Q(E) for all nonzero E ∈ D ⇒

P = Q. The converse is obvious.
8We will later treat this example more accurately.
9We recall that a category is of finite length if every object is both artinian and noetherian.
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2. It is obviously symmetrical, because the absolute value in R is.

3. d(P,Q) = sup
06=E∈D

{|φ−P(E)− φ−Q(E)|, |φ+
P(E)− φ+

Q(E)|} =

= sup
06=E∈D

{|φ−P(E) − φ−R(E) + φ−R(E) − φ−Q(E)|, |φ+
P(E) − φ+

R(E) + φ+
R(E) −

φ+
Q(E)|} ≤
≤ sup

0 6=E∈D
{|φ−P(E)− φ−R(E)|+ |φ−R(E)− φ−Q(E)|, |φ+

P(E)− φ+
R(E)|+ |φ+

R(E)−

φ+
Q(E)|} ≤
≤ sup

0 6=E∈D
{|φ−P(E)−φ−R(E)|, |φ+

P(E)−φ+
R(E)|}+ sup

06=E∈D
{|φ−R(E)−φ−Q(E)|, |φ+

R(E)−

φ+
Q(E)|} =

= d(P,R) + d(R,Q).

It will sometimes be useful to write this metric in a different way:

Lemma 2.4.3. If P,Q are in Slice(D), then

d′(P,Q) := inf{ε ∈ R≥0 | Q(φ) ⊂P([φ− ε, φ+ ε]) ∀φ ∈ R} = d(P,Q) .

Proof. First consider that if d(P,Q) ≤ ε, then|φ−P− (E)−φ−Q(E)| ≤ ε, |φ+
P− (E)−

φ+
Q(E)| ≤ ε; therefore if 0 6= E ∈ Q(φ), then φ−ε ≤ φ−P(E) ≤ φ+

P(E) ≤ φ+ε. This
means that Q(φ) ⊂P([φ− ε, φ+ ε]). For the converse, suppose d′(P,Q) ≤ ε. Take
a nonzero E ∈ D . If E ∈ Q(≤ φ), then clearly E ∈ P(≤ ψ + ε). If E 6∈ Q(≤ ψ),
then there is a nonzero object A ∈ Q(φ), with φ > ψ, and a nonzero map A −→ E.
Since A ∈P([φ−ε, φ+ε]), then E can’t be in P(≤ ψ−ε). Therefore |φ+

P−φ
+
Q| ≤ ε.

A symmetrical argument shows that d(P,Q) ≤ ε.

Now consider the complex vector space HomZ(K(D),C). We can associate a gener-
alized to each σ = (Z,P) ∈ Stab(D):

|| · ||σ : HomZ(K(D),C) // [0,+∞]

U � // ||U ||σ = sup
E σ−ss

|U(E)|
|Z(E)| .

Let us check it is actually a generalized norm:

1. Obviously ||U ||σ ≥ 0 for each U ∈ HomZ(K(D),C) (the module function is
always positive), while if ||U ||σ = 0, then for each semistable E the module
|U(E)| = 0; therefore, U = 0 itself, because the Grothendieck group is
generated by the class of semistable objects;

2. ||nU ||σ = sup
E σ−ss

|nU(E)|
|Z(E)| = sup

E σ−ss

|n||U(E)|
|Z(E)| = |n|||U ||σ;

3. ||U+V ||σ = sup
E σ−ss

|U(E)+V (E)|
|Z(E)| ≤ sup

E σ−ss

|U(E)|+|V (E)|
|Z(E)| = sup

E σ−ss
( |U(E)|
|Z(E)|+

|V (E)|
|Z(E)| ) ≤

≤ sup
E σ−ss

|U(E)|
|Z(E)| + sup

E σ−ss

|V (E)|
|Z(E)| = ||U ||σ + ||V ||σ.
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We are now ready to put a topology on the set Stab(D), using both the generalized
metric and the generalized norm we have put on Slice(D) and HomZ(K(D),C)
respectively. For each σ ∈ Stab(D) and for each ε ∈ (0, 1

8), we define the open ball
of center σ and radius ε in the following way:

Bε(σ) = {τ = (W,Q) ∈ Stab(D) | ||W −Z||σ < sin(πε) , d(P,Q) < ε} ⊂ Stab(D).

Remark 2.4.4. Notice that the condition ||W − Z||σ < sin(πε) simply means that,
if E is semistable with respect to σ, then the distance between the phases of Z(E)
and W (E) must be lesser than ε.

Lemma 2.4.5. If τ = (W,Q) ∈ Bε(σ), then there exist k1, k1 ∈ R>0 such that

k1||U ||σ < ||U ||τ < k2||U ||σ .

Proof. For each σ ∈ Stab(D), η ∈ [0, 1
2), the following holds for each nonzero E ∈ D

and U ∈ HomZ(K(D),C):

|φ+
σ − φ−σ | < η , |U(E)| < ||U ||σ

cos(πη) |Z(E)|.

Indeed, we can write Z(E) as the sum of the Z(Ai)’s, where the Ai’s are the
semistable quotients in the HN filtration of E. Therefore:

Z(E) =
∑
i

Z(Ai) ⇒ |Z(E)| =
∑
i

|Z(Ai)| cos(πφi)

where φi is the angle between Z(E) and Z(Ai). But we have that |φ+
σ (E)−φ−σ (E)| <

η, so it follows that for each i, φi ≤ η and cos(πφi) ≥ cos(πη). Therefore:

|Z(E)| =
∑
i

|Z(Ai)| cos(πφi) >
∑
i

|Z(Ai)| cos(πη) ⇒ |Z(E)|
cos(πη) >

∑
i

|Z(Ai)|.

Moreover, for each Ai, we have that ||U ||σ > |U(Ai)|
|Z(Ai)| (it is the sup over the class of σ-

semistable objects, and the Ai are semistable). It follows that |U(Ai)| < ||U ||σ|Z(Ai)|,
so∑

i
|U(Ai)| < ||U ||σ

∑
i
|Z(Ai)|. But |U(E)| ≤∑

i
|U(Ai)| and

∑
i
|U(Ai)| < ||U ||σ |Z(E)|

cos(πη) ,

therefore |U(E)| < ||U ||σ
cos(πη) |Z(E)|. Now, if τ = (W,Q) ∈ Bε(σ), we can apply this

inequality to U = W − Z and η = 2ε, obtaining

|W (E)− Z(E)| ≤ ||W − Z||σcos(2πε) <
sin(πε)

cos(2πε) |Z(E)|

for each E ∈ D τ -semistable. This means that:

|W (E)| − |Z(E)| ≤ |W (E)− Z(E)| < sin(πε)
cos(2πε) |Z(E)| ⇒

⇒ |W (E)| < (1 + sin(πε)
cos(2πε))|Z(E)| ⇒ |W (E)| < k|Z(E)|,

where k := 1 + sin(πε)
cos(2πε) . Therefore:
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1
|W (E)| >

1
k

1
|Z(E)| ;

|U(E)|
|W (E)| >

1
k

|U(E)|
|Z(E)| >

1
k
||U ||σ.

Moreover:

|U(E)| < ||U ||τ
cos(πη) |W (E)|;

|U(E)|
|W (E)| <

||U ||τ
cos(πη)

and finally:

||U ||σ
cos(πη) >

|U(E)|
|W (E)| >

1
k

|U(E)|
|Z(E)| >

1
k
||U ||σ

which means that

||U ||τ >
cos(πη)

k
||U ||σ ⇒ k1||U ||σ < ||U ||τ

where k1 := cos(πη)
k . The other inequalty follow with the same argument, and simply

switching Z and W .

We are now ready to prove that the open balls Bε(σ), with σ varying in Stab(D)
and ε in (0, 1

8), form a basis for a topology on Stab(D). We need to show that:

1. ⋃
ε,σ
Bε(σ) = Stab(D).

2. If τ ∈ Bε(σ), then there exists η > 0 such that Bη(τ) ⊂ Bε(σ).

The first statement is obvious (just think that each σ ∈ Stab(D) is the center of
an open ball). The second one follows from the lemma above. Indeed, consider
τ = (W,Q) ∈ Bε(σ).

1. It holds that d(P,Q) < ε. We want to show that there exists r > 0 such that
d(Q,R) < r ⇒ d(P,R) < ε. Take 2r = min{d(P,Q), ε − d(P,Q)}. By
triangle inequality, we get that d(P,R) ≤ d(P,Q) + d(Q,R).

d(P,Q) ∈ [0, ε2 ]. Then:

2r = d(P,Q) ⇒ r = d(P,Q)
2 ;

d(P,R) ≤ ε

2 + ε

4 = 3
4ε < ε.
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d(P,Q) ∈ ( ε2 , ε). Then:

2r = ε− d(P,Q) ⇒ r = ε− d(P,Q)
2 ;

d(P,R) ≤ d(P,Q) + ε− d(P,Q)
2 = d(P,Q) + ε

2 <
2ε
2 = ε.

2. ||W − Z||σ < sin πε. We want to show that there exists s > 0 such that
if ||W − X||τ < sin πs ⇒ ||Z − X||σ < sin πε, with X ∈ HomZ(K(D),C).
Again by triangle inequality, we get that ||Z−X||σ ≤ ||W −Z||σ + ||W −X||σ.
Therefore, using the Lemma, if k is a suitable constant:

||Z −X||σ ≤ ||W − Z||σ + ||W −X||σ < ||W − Z||σ + k||W −X||τ <

< sin πε+ k sin πs.

Now, we want sin πε+k sin πs < sin πε, therefore it must be sin πs < 0 (remind
that all the constants in the Lemma are positive). Does such an s exist? Of
course it does: for example, taking s ∈ (1, 2) will work.

We put on Stab(D) the topology whose base are the open balls defined above. By
the Lemma, the subspace

{U ∈ HomZ(K(D),C) | ||U ||σ < +∞} ⊂ HomZ(K(D),C)

is locally constant on Stab(D), i.e. if ||U ||σ < +∞, then for each ε ∈ (0, 1
8) and

τ ∈ Bε(σ) we have that ||U ||τ < +∞, so this holds for each τ in the same connected
component of σ. Let Σ be a connected component of Stab(D) and set:

V (Σ) := {U ∈ HomZ(K(D),C) | ||U ||σ < +∞ , σ ∈ Σ}.

Remark 2.4.6. If σ = (Z,P) is in Σ, then Z ∈ V (Σ): obviously

||Z||σ = sup
E σ−ss

|Z(E)|
|Z(E)| = 1.

Remark 2.4.7. The Lemma says exactly that all these norms are equivalent, i.e.,
they induce the same topology.
We are now ready to state the key theorem:

Theorem 2.4.8. The map

Z : Σ −→ V (Σ)

(Z,P) 7→ Z ,

where both Σ and V (Σ) have the subspace topology, is a local homeomorphism.

The local injectivity follows from the proposition below:

Proposition 2.4.9. Suppose σ = (Z,P), τ = (Z,Q) ∈ Stab(D). If d(P,Q) < 1,
then σ = τ .
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Proof. Suppose by contradiction that σ 6= τ , i.e., considering that the central charge
is the same, that P 6= Q. It means that there exists φ ∈ R and E ∈P(φ) such that
E 6∈ Q(φ). It cannot be E ∈ Q(≥ φ) because the fact that d(P,Q) < 1 would imply
that E ∈ Q([φ, φ+ 1)), contradicting the fact that σ and τ have the same central
charge: indeed, Z(E) = W (E) would mean in particular that φZ(E) = nφW (E) for
some n ∈ Z. For the same reason, it cannot be E ∈ Q(≤ φ). Therefore, there exists
a DT

A −→ E −→ B
+1−→

with both A and B nonzero, A ∈ Q((φ, φ + 1)), B ∈ Q((φ − 1, φ]). It cannot be
A ∈P(≤ φ), because it would be A ∈P((φ− 1, φ]), contradicting the fact that the
two stability conditions have the same central charge, as above. So there exists an
object C ∈P(ψ), with ψ > φ, and a nonzero map C −→ A. Consider the following
diagram:

C

��

0

��????????

||
B[−1] // A // E

+1 //

the composition C −→ A −→ B must be zero, because ψ > φ, then the map C −→ A
lifts to B[−1]. But B[−1] ∈P(≤ φ− 1), therefore this is a contradiction.

The local surjectivity follows from the theorem below:

Theorem 2.4.10. Let σ = (Z,P) ∈ Stab(D). Then there exists ε0 > 0 such that
if 0 < ε < ε0 and W ∈ HomZ(K(D),C) satisfies

|W (E)− Z(E)| < sin πε|Z(E)|

for each E semistable with respect to σ, then there exists a slicing Q ∈ Slice(D) such
that τ = (W,Q) is a stability condition and d(P,Q) < ε.

Roughly speaking, the theorem says that if we consider a stability condition, a slight
deformation of its central charge and a suitable choice of a slicing lead to a new
stability condition. This means that the map in the key theorem is locally surjective.
The proof of this theorem is quite long and technical, so we will just give a sketch
and skip the details.

Proof. (sketch). What we do is simply define a slicing which we imagine to make
everything work. Take ψ ∈ R and set:

Q(ψ) := {0 ∈ D}∪{E ∈ D | E W−semistable of phaseψ in P((a, b)) with a+ε ≤ ψ ≤ b−ε for some ε > 0}.

We need to show that Q is actually a slicing and that (W,Q) is a stability condition.
The fact that Q is a slicing follows from the two lemmas below:

Lemma 2.4.11. If E ∈ Q(ψ1), F ∈ Q(ψ2) and ψ1 > ψ2, then HomD(E,F ) = 0

(the strategy of the proof is quite similar to the one used for Proposition 2.1.4,
reminding that the category we are dealing with is not abelian, but quasi-abelian).
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Lemma 2.4.12. Let A = P((a, b)) ⊂ D a finite length subcategory such that
0 < b− a < 1− 2ε. Then each nonzero object of P((a+ 2ε, b− 4ε)) possesses a HN
filtration, whose W -semistable factors are objects of A , and moreover a+ ε ≤ φi ≤
b− ε, where φi is the phase of the i-th semistable factor.

(this is similar to what we proved for Proposition 2.1.6, but with much more technical
details to fix).

The fact that τ = (W,Q) simply follows from the definition of Q.

2.5 The natural actions
In this section we will show that, for each triangulated category D , there are two
natural actions on the space of stability conditions Stab(D). These two actions will
be very important because they will allow us to describe, partially or totally, the
space Stab(D) where D is the derived category of some variety.

• An action on the right is provided by the topological group G̃L+(2,R). No-
tice that we can identify G̃L

+(2,R) = {(T, f) | T : R2 −→ R2, detT >
0 and f : R −→ R increasing with the property that f(φ + 1) = f(φ) + 1 ∈
R such that the induced maps on S1 = R/2Z = R2 \ {0}/R+ are the same }.
The reason of this identification is the following: we know that the fundamental
group π1(GL+(2,R)) = Z, as it is homotopic to the product S1×R3, therefore
it is a Z-principal bundle . Obviously there is an action G̃L+(2,R)× Z −→
GL+(2,R) which preserves the fibers, acting freely and transitively on them.
As a Z-principal bundle, it is induced by a continuous map

GL+(2,R) −→ S1

(a, b, c, d) 7→ 1√
a2 + c2

(a, c)

and therefore an element can be seen as (T, x), where T ∈ GL+(2,R) and x is
the first vector of T normalized. Now we can see x as the initial value of a lift
f : R −→ R of a map T̃ : S1 −→ S1 (the one induced by T). As R −→ S1 is a
covering, f is completely determined by T and the initial point x.
Now, the action is given by;

Stab(D)× G̃L+(2,R) −→ Stab(D)

(Z,P), (T, f) 7→ (T−1 ◦ Z,P ′)

where P ′(φ) = P(f(φ)).

• The other action is the one provided by the group AutD :

AutD × Stab(D) −→ Stab(D)
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Φ , (Z,P) 7→ (Z ◦ Φ−1,Φ(P))

where Φ(P)(φ) = Φ(P(φ)).





Chapter 3

Fourier-Mukai transforms and
derived equivalences

Fourier-Mukai transforms are a powerful tool when dealing with derived categories
of coherent sheaves over a variety. Functors that are of Fourier-Mukai type behave
well with respect to elementary functorial operation: they admit left and right
adjoints, the composition of two Fourier-Mukai transforms is again of Fourier-Mukai
type and, finally, there are explicit conditions which allow one to decide whether
a Fourier-Mukai transform is an equivalence or not. There are two main results
in the theory of Fourier-Mukai transforms: the first one, which is due to Orlov
(Theorem 3.1.5), states that each exact quivalence between two derived category
D(X) and D(Y ), where X and Y are smooth projective varieties, is isomorphic to an
equivalence of Fourier-Mukai type. The second one, which is a corollary of Theorem
3.1.5, gives a description of the group AutD in some particular cases. It states that
if X is a smooth projective variety with ample canonical or anticanonical sheaf, then
the group AutD(X) is generated by shifts, automorphisms of the variety and twist
by line bundles (we will later explain what a twist functor is). For a complete proof
of this Theorem, see [6].

Let us now explain some heuristic behind the Fourier-Mukai transforms. First, recall
what the classical the Fourier transform is. It is something like this: given a function
f(x), the Fourier transform of f is the function g(y) :=

∫
f(x)e2πixydx.

Let us give a quick description of the Fourier-Mukai transform:

1. Given two varieties X and Y , and a sheaf P on X×Y . The sheaf P sometimes
is called the "integral kernel". Take a sheaf F on X. Think of F as being
analogous to the function f(x) in the classical situation. Think of P as being
the analogous, in the classical situation, of some function of x and y.

2. Now pull back the sheaf along the projection q : X × Y → X. Think of the
pullback q∗F as being the analogous of the function f(x), and of P as being
analogous to the function e2πixy.

43
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3. Next, take the tensor product q∗F ⊗ P. This is analogous to the function
f(x)e2πixy.

4. Finally, push down q∗F ⊗P along the projection p : X×Y → Y . The result is
the Fourier-Mukai transform of F — it is p∗(q∗F ⊗P). This last pushforward
step can be thought of as "integration along the fiber": here the fiber direction
is the X direction. So in the classical situation it is g(y) =

∫
f(x)e2πixydx,

which is the Fourier transform of f(x).

To make all of this rigorous, we have to deal with derived categories of coherent
sheaves, not just coherent sheaves. In this context the main difficulty is the pushfor-
ward operation. As is well known, the pushforward of a coherent sheaf is not always
coherent. But we can use the derived pushfoward instead, at the "price" of having
to deal with derived categories.

When X is an abelian variety, Y is the dual abelian variety, and P is the Poincare
line bundle on X × Y , then the Fourier-Mukai transform gives an equivalence of the
derived category of coherent sheaves on X with the derived category of coherent
sheaves on Y . This was proved by Mukai. This is supposed to be analogous to
the statement I made about the classical Fourier transform being invertible. In
other words the Poincare line bundle is really supposed to be analogous to the
function e2πixy. A more general choice of P corresponds to, in the classical situation,
so-called integral transforms, i.e. transforms of Fourier type with a different kernel.
They do not have, in general, all the good properties of the Fourier transform,
but they can be nonetheless studied to provide examples of transforms between
functions in Lp spaces. This is probably why P is called the integral kernel: to recall
the kernel of the Fourier-transform. When X is an abelian variety, therefore, the
analogies between the classical Fourier transform and the Fourier-Mukai transforms
are stronger, and some of the properties which make the Fourier transform a powerful
tool in analysis are analogously resembled in the algebraic geometric version. This
topic is completely treated in [13].

In this chapter, we will give the definition of the Fourier-Mukai transform, and we
will its basic properties and give some interesting examples of how it can be applied.

3.1 Definition and first properties

Let X and Y be smooth projective varieties1, and let

X × Y
q

{{wwwwwwwww
p

##GGGGGGGGG

X Y

1By a variety we mean an integral separated scheme of finite type over an algebraically closed
field
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be the projection on each of the two factors. To each object P ∈ D(X×Y ) , we can
associate an exact functor of triangulated categories ΦP : D(X) −→ D(Y ), which is
defined as follows:

ΦP : D(X) −→ D(Y )

F • 7→ Rp∗(P
L
⊗ Lq∗F •).

Notation 3.1.1. Now and later, we will write f∗, f∗,⊗, H om, Hom respectively
for Lf∗, Rf∗,

L
⊗, RH om, RHom: there is no risk of confusion, as we will always

work in the derived context.

Remark 3.1.2. Be careful!The two notations HomD(X)(•, •) and Hom(•, •) refer to
different objects.
Let us notice some a basic consequence of the definition. The functor ΦP is called
Fourier-Mukai Transform of kernel P. Notice that it is always exact, because it
is the composition of three exact functors, namely p∗, q∗ and P⊗, which we have
proved to be exact in the first chapter. The exactness of a functor in the triangulated
context is really important, much more than in the abelian context: an exact functor
of triangulated categories commutes with the shift, which means more or less that
we can treat each complex in the derived category like a direct sum of sheaves (in
Proposition 3.1.7 we will prove that any complex is isomorphic to a direct sum of
shifted sheaf). A triangulated functor which is not exact is, therefore, much less
manageable: for this reason, we will focus our attention exclusively on exact functors
all through the chapter.
Properties:

1. The identity

id : D(X) −→ D(X)

is isomorphic to the Fourier-Mukai transform with kernel O∆, where ∆ ⊂
X × X is the diagonal . Indeed, if we consider the diagonal embedding
i : X

∼=−→ ∆ ⊂ X ×X, then i∗OX
∼= O∆, and for each F • ∈ D(X) one has:

ΦO∆(F •) = p∗(O∆ ⊗ q∗F •)
∼= p∗(i∗OX ⊗ q∗F •)
∼= p∗i∗(OX ⊗ i∗q∗F •)
∼= (p ◦ i)∗(OX ⊗ (q ◦ i)∗F •)
∼= F •

because p ◦ i = q ◦ i = Id.

2. Let P ∈ D(X × Y ). Then:
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• For each f : Y −→ Z:

f∗ ◦ ΦP
∼= Φ(IdX×f)∗P

where (IdX × f)∗P ∈ D(X × Z). Indeed, consider the projections:

X × Y
q

{{wwwwwwwww
p

##GGGGGGGGG

IdX×f

��

X Y

X × Z
p̂

{{wwwwwwwww
q̂

##GGGGGGGGG

X Z

then one has:

Φ(IdX×f)∗P(F •) = p̂∗((IdX × f)∗P ⊗ q̂∗F •)
∼=

projection formula
p̂∗(IdX × f)∗(P ⊗ (IdX × f)∗q̂∗F •)

∼= (p̂ ◦ (IdX × f)︸ ︷︷ ︸
f◦p

)∗(P ⊗ (q̂ ◦ (IdX × f)︸ ︷︷ ︸
q

)∗F •)

∼= f∗p∗(q∗P ⊗F •)
∼= f∗ ◦ ΦP(F •).

• For f : Z −→ Y :

f∗ ◦ ΦP
∼= Φ(IdX×f)∗P

where (IdX × f)∗P ∈ D(X × Z). Indeed, if one considers the pullback
square:

X × Z IdX×f //

p̂
��

X × Y
p

��
Z

f
// Y

the flat base change gives

f∗p∗ = p̂∗(IdX × f)∗.

Therefore, an explicit computation gives:
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f∗ ◦ ΦP(F •) = f∗p∗(P ⊗ q∗F •)
∼= p̂∗ ◦ (IdX × f)∗(P ⊗ q∗F •)
∼= p̂∗((IdX × f)∗P ⊗ (IdX × f)∗q∗F •)
∼= p̂∗((IdX × f)∗P ⊗ (q ◦ (IdX × f)︸ ︷︷ ︸

q̂

)∗F •)

∼= Φ(idX×f)∗P(F •).

• For g : W −→ X, the composition ΦP ◦ g∗ is isomorphic to the Fourier-
Mukai transform Φ(g×IdY )∗P with kernel (g × IdY )∗P ∈ D(W × Y ). If
one calls the projections

X × Y
q

zzvvvvvvvvv
p

##GGGGGGGGG

IdX×f

��

X Y

W × Y
p̂

zzvvvvvvvvv
q̂

##GGGGGGGGG

W Y

then the flat base change on the pullback square

W × Y q̂ //

g×IdY
��

W

g

��
X × Y q

// X

gives again:

q∗g∗ = (g × IdY )∗q̂∗.

Therefore:

ΦP ◦ g∗(F •) = p∗(P ⊗ q∗g∗F •)
∼=

flat base change
p∗(P ⊗ (g × IdY )∗q̂∗F •)

∼=
projection formula

p∗(g × IdY )∗((g × Id∗Y P ⊗ q̂∗F •)

= (p ◦ (g × IdY )︸ ︷︷ ︸
p̂

)∗((g × Id∗Y P ⊗ q̂∗F •)

= Φ(g×IdY )∗P(F •).
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• For g : X −→W the composition ΦP ◦ g∗ is isomorphic to the Fourier-
Mukai transform Φ(g×IdY )∗P . Indeed, just applying the projection for-
mula, one gets:

Φ(g×IdY )∗P(F •) = p̂∗((g × IdY )∗P × q̂F •) ∼=
∼= p̂∗(g × IdY )∗(P ⊗ (g × IdY ))∗q̂∗F •) =
= (p̂ ◦ (g × IdY )︸ ︷︷ ︸

p

)∗(P ⊗ (q̂ ◦ (g × IdY )︸ ︷︷ ︸
g◦q

)∗F •) =

= p∗(P × q∗g∗F •) =
= ΦP ◦ g∗(F •).

3. If f : X −→ Y is a morphism between algebraic varieties, then

f∗ ∼= ΦOΓf
: D(X) −→ D(Y ).

Indeed, by an easy computation:

4. If L is a line bundle on X, then:

Φi∗L
∼= L ⊗ (•)

where i : X
∼=−→ ∆ ⊂ X ×X is again the diagonal embedding. Indeed, the

projection formula gives:

Φi∗L (F •) = p∗(i∗L ⊗ q∗F •)
∼= p∗i∗(L ⊗ i∗q∗F •)
= L ⊗F •.

5. The shift functor [1] : D(X) −→ D(X) is isomorphic to the FMT with kernel
O∆[1]. The proof is very similar to the one of Item (1), and it simply exploits
the fact that any exact functor of triangulated categories commutes with the
shift:

ΦO∆[1](F •) = p∗(O∆[1]⊗ q∗F •)
∼= p∗(O∆ ⊗ q∗F •)[1]
∼= [1] ◦ ΦO∆(F •)
∼= F •[1].
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6. Let i : X
∼=−→ ∆ ⊂ X ×X be the diagonal embedding again. Then:

Φi∗ωkX
∼= SkX [−k · dimX].

Where S is the Serre functor, as in Section 3.1 Indeed, by Item (4) and again
by the fact that any exact functor commutes with the shift, one easily gets:

(SkX [−k · dimX])(F •) = SkX(F •[−k · dimX])
= F •[−k · dimX]⊗ (ωX [dimX])k

= F •[−k · dimX]⊗ ωX [dimX]⊗ ...⊗ ωX [dimX]︸ ︷︷ ︸
k

= F •[−k · dimX]⊗ (ωX ⊗ ...⊗ ωX︸ ︷︷ ︸
k

)[k · dimX]

= F •[−k · dimX]⊗ ωkX [k · dimX]
∼= F • ⊗ ωkX
∼= Φi∗ωkX

(F •).

7. Affare sulle deformazioni che non ho capito

8. The composition of two arbitrary FMT is again a FMT. Let X,Y, Z be smooth
projective varieties over a field k, as in the introduction to the Chapter.
Consider objects P ∈ D(X × Y ), Q ∈ D(Y ×Z). Then define an object R in
D(X × Z) by the formula:

R := πXZ∗(π∗XY P ⊗ π∗Y ZQ),

where

X × Y × Z
πXY

wwppppppppppp
πXZ

��

πY Z

''NNNNNNNNNNN

X × Y X × Z Y × Z.

Then one has ΦQ ◦ ΦP
∼= ΦR , as displayed below:

D(X) ΦP //

ΦR

66
D(Y ) ΦQ // D(Z).

For the proof, simply look at this commutative diagram:
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π∗XY P⊗π∗Y ZQ

X × Y × Z
πXY

vvllllllllllllllllll
πY Z

((QQQQQQQQQQQQQQQQQQ πZ

��

πX

		

πXZ

��

P
X × Y

q

~~||||||||||
p

  BBBBBBBBBB

Q
Y × Z

u

~~}}}}}}}}}}
t

  AAAAAAAAAA

X

RRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRR Y X × Z
R

r

zzttttttttt s

$$JJJJJJJJJ
Y Z

mmmmmmmmmmmmmmmmmmm
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X Z

then write down the following isomorphisms:

ΦR(F •) = r∗(R ⊗ s∗F •)
∼= r∗(πXZ∗(π∗XY P ⊗ π∗Y ZQ)⊗ s∗F •)
∼= r∗πXZ∗︸ ︷︷ ︸

(r◦πXZ)∗=πZ∗

(π∗XY P ⊗ π∗Y ZQ ⊗ π∗X︸︷︷︸
(q◦πXY )∗

F •) projection formula

∼= πZ∗︸︷︷︸
(t◦πY Z)∗

(π∗XY (q∗F • ⊗P)⊗ π∗Y ZQ)

∼= t∗πY Z∗(π∗XY (q∗F • ⊗P)⊗ π∗Y ZQ)
∼= t∗(πXZ∗π∗XY (q∗F • ⊗P)⊗Q) projection formula
∼= t∗(u∗p∗(q∗F • ⊗P)⊗Q) πY Z∗ ◦ π∗XY = u∗ ◦ p∗
= t∗(u∗ΦP(F •)⊗Q)
= ΦQ(ΦP(F •)).

where the passage πY Z∗ ◦ π∗XY = u∗ ◦ p∗ is given by the flat base change applied
to the diagram

X × Y × Z πXY //

πY Z
��

X × Y
p

��
Y × Z u // Y .

9. Each FMT has a left and a right adjoint, which are both FMT, whose kernels
can be explicitly described.

Definition 3.1.3. For each P ∈ D(X × Y ), we set

PL := P∨ ⊗ p∗ωY [dimY ]
PR := P∨ ⊗ q∗ωX [dimX] ,
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Therefore

ΦPL
(F •) = q∗(P∨ ⊗ p∗ωY [dimY ]⊗ p∗F •)

= q∗(P∨ ⊗ p∗(F • ⊗ ωY [dimY ]))
= ΦP∨(SY (F •)) = (ΦP∨ ◦ SY )(F •)

and

ΦPR
(F •) = q∗(PR ⊗ p∗F •)

= q∗(P∨ ⊗ p∗ωX [dimX]⊗ p∗F •)
= q∗(P∨ ⊗ p∗F •)⊗ ωX [dimX] (projection formula)
= SX ◦ Φ∨(F •) .

This yelds:

Proposition 3.1.4. (Mukai) Let P ∈ D(X × Y ). Then

ΦPL
` ΦP ` ΦPR

.

Proof. For each E • ∈ D(X), F • ∈ D(Y ), we have:

HomD(X)(ΦPL
(F •),E •)

= HomD(X)(q∗(P∨ ⊗ p∗ωY [dimY ]⊗ p∗F •),E •)
(definition of ΦPL

(F •))
= HomD(X×Y )(P∨ ⊗ p∗ωY [dimY ]⊗ p∗F •, q∗E • ⊗ p∗ωY [dimY ])

(Grothendieck - Verdier duality)
= HomD(X×Y )(P∨ ⊗ p∗F •, q∗E •)

(SY is fully faithful ???)
∼= HomD(X×Y )(p∗F •,P ⊗ q∗E •)

(properties of P∨)
∼= HomD(Y )(F •, p∗(P ⊗ q∗E •))

(p∗ ` p∗)
∼= HomD(Y )(F •,ΦP(E •)).

And it similarly goes for ΦPR
:
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HomD(X)(E •,ΦPR
(F •))

= HomD(X)(E •, q∗(PR ⊗ p∗F •))
= HomD(X×Y )(q∗E •,PR ⊗ p∗F •)
= HomD(X×Y )(P ⊗ q∗E •, q∗ωX [dimX]⊗ p∗F •)
= HomD(Y )(p∗(P ⊗ q∗E •))
= HomD(Y )(ΦP(E •),F •)

The importance of Fourier-Mukai transforms is shown in the following Theorem,
which is due to Orlov.

Theorem 3.1.5. Let X and Y be shooth projective varieties and let

F : D(X) −→ D(Y )
be a fully faithful functor. If F admits left and tight adjoint functors, then there
exists an object P ∈ D(X × Y ) such that

ΦP
∼= F.

Proof. The proof is highly non-trivial, so we will just give references. There are two
accounts of it in literature: the original one due to Orlov in [?], and another one
due to Kawamata in [11].

The following example gives an idea of how one can lose information while passing
from the objects in the derived category of the product to the corresponding Fourier-
Mukai transforms.

Example 3.1.6. Let X be an elliptic curve, and consider O∆ ∈ D(X ×X). Using
Serre duality, one gets that:

Ext2(O∆,O∆) ∼= Ext0(O∆,O∆ ⊗ ωX×X︸ ︷︷ ︸
∼=OX×X

)

∼= HomOX×X (O∆,O∆)
∼= HomOX×X (OX×X ,OX×X)|∆
∼= C

therefore ext2(O∆,O∆) = hom(O∆,O∆[2]) = 1, which implies that there exists a
nontrivial morphism

φ : O∆ −→ O∆[2].
Obviously, the morphism φ induces a morphism between the two Fourier-Mukai
transforms corresponding to the two objects:
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Φφ : ΦO∆ −→ ΦO∆[2].

But we already know that

ΦO∆
∼= IdD(X)

and

ΦO∆[2] ∼= [2],

therefore the morphism of functors Φφ is simply the double shift: F • 7→ F •[2]. We
now want to show that Φφ is zero even if φ is not. For a sheaf F ∈ Coh(X) this is
trivial, as Ext2(F ,F ) = 0, by the fact that dimCX = 1. To conclude, one uses the
following

Lemma 3.1.7. Let X be a smooth projective curve. Then any object in D(X) is
isomorphic to a direct sum of shifted sheaves

⊕
i∈I Ei[i], where Ei ∈ Coh(X) for each

i.

Proof. Let E • ∈ D(X). The proof goes by induction on the length of E • as a
complex, i.e. the minimum k = j − i such that Hn(E •) = 0 for each n 6∈ {i, ..., j}.
If the length of E • is one, then E • is itself a shifted sheaf, thus there is nothing
to prove. Suppose now that the length of E • is k > 1. Then we can easily find a
distinct triangle:

H i(E •)[−i] −→ E • −→ E •1
+1−→ H i(E •)[1− i]

where, as above, i = min{` | Hn(E •) = 0 ∀ n < `}, and E •1 is a complex with length
at most k−1. The idea is quite simple: suppose that E • = {... −→ E `−1 d`−1

−→ E ` `−→
E `+1 −→ ...}. Then the sheaf H i(E •)[−i] is isomorphic, in the derived category,
to the complex {... −→ 0 −→ ...Cokerdi−1 di−1

−→ E i di−→ Imdi −→ 0 −→ ...}, which
naturally embeds in E •:

... // Cokerdi−1di−1
//

id
��

E i di //

id
��

Imdi di+1
//� _

ι
��

0 //

��

0 //

��

...

... // Cokerdi−1di−1
// E i di // E i+1 di+1

// E i+2 di+2
// E i+3 // ...

the first two diagrams obviously commute, and the third one also does because E •

is a complex, which means that the kernel of di contains the image of di−1. Now,
the quotient complex is
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... // Cokerdi−1di−1
//

id
��

E i di //

id
��

Imdi di+1
//� _

ι
��

0 //

��

0 //

��

...

... // Cokerdi−1di−1
//

��

E i di //

��

E i+1 di+1
//

��

E i+2 di+2
//

��

E i+3 //

��

...

... // 0 di−1
// 0 di // Cokerdi d

i+1
// E i+2

1
di+2

// E i+3
1

// ...

where the complex E •1 = {... −→ 0 −→ Cokerdi −→ E i+1
1 −→ ...} has length k − 1.

Now, if this distinguished triangle splits, i.e. E • ∼= H i(E •)[−i] ⊕ E •1 , then the
induction hypotesis allows us to conclude. Thus, by property 5 of the distinguished
triangles, it suffices to prove that Hom(E •1 , H i(E •)[1 − i]) = 0. Use the inductive
hypotesis again and write

E •1
∼=
⊕
i>k

H i(E •1 )[−k].

Therefore:

Hom(E •1 , H i(E •)[1− i]) ∼= Hom(
⊕
i>k

H i(E •1 )[−k], H i(E •[1− i])

∼=
⊕
i>k

Hom(H i(E •1 )[−k], H i(E •[1− i])

∼=
⊕
i>k

Ext1+k−i(Hk(E •1 ), H i(E •)) = 0

because dimX = 1 and k > i.

This allows us to conclude: now take F • ∈ D(X). The lemma above tells us that
F • ∼=

⊕
i∈I Fi[i], therefore

Hom(F •,F •[2]) ∼= Hom(
⊕
i∈I

Fi[i],
⊕
i∈I

Fi[i+ 2])

∼=
⊕
i∈I

⊕
j∈I

Hom(Fi[i],Fj [j])

and the shift map sends each Fi[i] 7→ Fi[i+ 2] and, for what said above, is zero.



Chapter 4

Stability conditions on K3
surfaces

In this chapter, we are going to give examples of stability conditions on the derived
category of a K3 surface: this will show how the machinery we have developed in
the first part applies to a concrete triangulated category, i.e. the derived category
of a variety. We will not be dealing with abstract triangulated categories anymore:
our objects of study, from now on, will be concrete derived categories, namely
D(X) := Db(Coh(X)), where X is an algebraic variety or, more specifically, a K3
surface. Recall that the objects of D(X) are complexes of coherent sheaves on X,
which we will try to treat almost as sheaves, using the fact that there is a natural
embedding Coh(X) ↪→ D(X), which simply comes from the fact that the abelian
category Coh(X) is the heart of a bounded t-structure on D(X). We shall thus need
to extend some of the general sheaf theory to complexes of sheaves: first of all, we
would like to give some sense to sheaf invariants even for complexes. Recall that the
Chern character of an invertible sheaf is:

ch(L ) = exp(c1(L )) =
+∞∑
k=0

c1(L )k
k! .

Notice that this definition naturally extends to arbitrary coherent shaves: first, to
the locally free ones, by simply invoking the Splitting Principle, then to coherent
sheaves using the fact that any coherent sheaf admits a finite locally free resolution.
Since exact sequences in the Grothendieck group always split, and since the Chern
classes are invariant under isomorphisms of sheaves, then the Chern Character as
a ring homomorphism from the Grothendieck group of a variety to its rational
cohomology ring is well defined1. Recall that the Grothendieck group has a natural
ring structure, given as follows:

[E] + [F ] := [E ⊕ F ] ;

[E] · [F ] := [E ⊗ F ]

for each [E], [F ] ∈ K(X). Now, we wonder how to further extend the definition
of Chern classes and Chern character to complexes of sheaves. The most natural

1Actually, when dealing with K3 surface, it suffices to work with the integral cohomology ring,
as the intersection form induced by the natural cup product is even.

55
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definitions are the following ones:

ck(F •) =
+∞∑
i=−∞

(−1)ick(H i(F •))

and

ch(F •) =
+∞∑
i=−∞

(−1)ich(H i(F •))

for each F • ∈ K(X).2 Notice that these definitions simply use the fact that any
sheaf complex in the derived category is completely identified by its cohomology,
and that the sums are indeed finite, due to the fact that we are working on the
bounded derived category.
We shall count upon the theory introduced in the previous chapters to develop the
necessary techniques. Our purposes, in this chapter, will be:

1. To give some generalities of the theory in the case of K3 surfaces. In particular,
we will need to use the notion of mukai vector of an object F • in the derived
category D(X) and to explain how it comes up to be important in the classifi-
cation of the objects of D(X): it defines an isometry between the Grothendieck
group of X and the integral cohomology ring, when both are endowed with
suitable bilinear forms. Then, we will examine the group AutD(X) of the
exact autoequivalences of X, showing that there is a map between AutD(X)
and the group of Hodge isometries os the integral cohomology lattice. We
will need the theory developed in the previous chapter, as Fourier-Mukai
transforms are needed. We will look at the kernel of this map, in order to
describe some elements belonging to it. The principal aim of this will be to
give all the needed definitions in order to state Theorem 4.1.8 and Conjecture
4.1.9, which are some of the principal results of the whole theory. The idea
behind conjecture 4.1.9 is the following one: in the case of elliptic curves,
the space of stability condition is not only completely determined, but also
simply connected: it comes out to be homeomorphic to the universal cover of a
connected component of some linear group. In the case of K3 surface, one’s aim
would be to reproduce this result, even if in a weaker version: what we hope is
that there is at least a connected component (the one preserved by the action
of AutD(X), see Chapter 2) which is simply connected. Moreover, Conjecture
4.1.9 states that the map between the group AutD(X) and the group of Hodge
isometries of the integral cohomology lattice is surjective, giving an explicit
description of its kernel.

2. To build a class of stability conditions, using the techniques provided by tilting
theory. The fact is that, when dealing with derived categories, one has a
preferred t-structure (the trivial one). Starting from this, it is easy to find new
hearts, and therefore the chance to build suitable central charges raises. To
find a new stability condition, we will use a pair of real divisors, where one
of the two is ample, to build a torsion pair inside the category Coh(X) and,

2We will always denote with Hi(F •) the cohomology of the complex F • = {−→ F i−1 −→
F i −→ F i+1 −→ ...}, i.e. Hi(F •) = Kerdi/Imdi−1.
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therefore, a new heart in D(X) by right tilting. Then, we will find a couple
of central charges, both of the two compatible with the so-found heart, and
we will explicitely show the compatibility. A very important result to recall
will be Proposition 2.3.5, which gives a link between stability conditions on
triangulated categories and hearts of bounded t-structures. This one will be
the higher-dimensional known examples, as in dimension three no examples of
stability conditions have been found yet.

3. To give a local characterization of the map

π : Stab(X) := StabN (X) −→ N (X)⊗ C,

mapping a stability condition to its central charge, which is slightly different
from the one found in theorem 2.4.8. Notice that all through the chapter,
the space Stab(X) will denote the space StabN (X) of the stability conditions
which factorize via the numerical Grothendieck group N (X). What will be
shown is that, when restricted to the preimage of a certain subset of N (X)⊗C,
it defines a topological covering. What will be more difficult is to find the
suitable subset: we will use the results developed in the first part and the
properties of spherical objects.

4. To describe the wall-and-chamber structure of a connected component of
the complex manifold Stab(X). We will prove that there is a collection of
codimension-one submanifolds, called walls, which mark a border between
stability and non-stability for certain objects. Roughly speaking: if one fixes
a stability condition which is far from the walls and deforms it, some of the
objects which are stable with respect to it remain stable until the deformed
stability condition crosses one of the walls. This phenomenon is best-known
as "wall-crossing". In particular, we will describe the walls and prove how the
stability of some objects changes from a chamber to another. This result is
important because it was developed by Arcara and Bertram in [?]: what they
have found is that there is a link even between the Moduli spaces parametrizing
the stable objects in each chamber. More specifically, one of that moduli spaces
is a Moduli space of sheaves in the "classical" sense, and there are birational
maps, called Mukai flops, which connect each of the Moduli space to another
one.

Let us now give some basic results we are going to use all through the chapter.

4.1 Foundational material

Let X be an algebraic K3 surface over C. From now on, we will be principally
dealing with two objects, i.e. the Grothendieck group K(X) of X, which we have
already defined, and the integral cohomology ring H∗(X,Z). If we want to look for
an application going from one to the other, the most natural choice could be:

ch : K(X) −→ H∗(X,Z)
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Now we want to endow both K(X) and H∗(X,Z) with a bilinear form. On the
Grothendieck Group K(X), we consider the Euler bilinear form χ(•, •), defined as:

χ([E], [F ]) =
+∞∑
i=−∞

(−1)i dimC Hom(E,F [i]) .

Notation 4.1.1. We will usually write simply χ(E,F ) instead of χ([E], [F ]), when
there is no need to stress the fact that E and F are classes in the Grothendieck group,
and hom(E,F ), exti(E,F ) respectively for dimC Hom(E,F ) and dimC Exti(E,F ).

This works because of the following fact: the derived category of a smooth projective
variety over the complex numbers is of finite type, i.e. for each pair of objects
E,F ∈ D(X), the complex vector space ⊕i HomX(E,F [i]) is finite-dimensional.3.
Now, applying Serre’s duality theorem, it is easy to show that the left and right
radicals K(X)⊥ and ⊥K(X) with respect to the form χ are the same. Indeed, recall
that:

K(X)⊥ := {E ∈ K(X) | χ(E,F ) = 0 ∀F ∈ K(X)}
⊥K(X) := {E ∈ K(X) | χ(F,E) = 0 ∀F ∈ K(X)}.

So we need to show that if E is in ⊥K(X), then for each F ∈ K(X) one has
χ(E,F ) = 0. But the fact that E ∈⊥ K(X) means that for each F ∈ K(X):

0 = χ(E,F ) = hom(E,F )− ext1(E,F ) + ext2(E,F )

This shows that the Euler form descends to a nondegenerate bilinear form on the
numerical Grothendieck group

N (X) = K(X)/K(X)⊥ .

On the other hand, we can define a symmetric bilinear form on the integral coho-
mology ring. We can write

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) ∼= Z⊕NS(X)⊕ Z

and endow it with the Mukai bilinear form, given by

((r,∆, s), (r′,∆′, s′)) = rs′ + r′s−∆ ·∆′

where the product ∆ ·∆′ is the usual cup product of the cohomology ring. This
form is clearly bilinear and symmetric, and the resulting lattice is even of signature
(3,19) (see the previous chapter about generalities on K3 surfaces).
Now, we want an isometry:

? : K(X)χ(·,·) −→ H∗(X,Z)(·,·).

First we notice that the Chern character does not work. Indeed, take the structure
sheaf OX . Obviously:

3The reason is that the Ext groups are cohomologies, by Serre duality, and hence finite-
dimensional.



4.1 Foundational material 59

χ(OX ,OX) = hom(OX ,OX)− ext1(OX ,OX) + ext2(OX ,OX) = 1 + 1 = 2

but

(ch(OX), ch(OX)) = ((1, 0, 0), (1, 0, 0)) = 0.

We need therefore to create something which works better. Luckily, we have a strong
tool which suggests us the right solution: recall that the Hirzebruck-Riemann-Roch
theorem states that if X is a smooth compact complex variety and F ∈ Coh(X),
then

χ(X,F ) =
∫
X

ch(F )Td(X)

where Td(X) is the Todd class of X, namely

Td(X) := Td(TX) =
∏ 1

1− eγi

where the γi’s are the Chern roots of F . Now, by Serre duality, we know that:

Exti(E ,F ) ∼= H2−i(X,E ∗ ⊗F )

therefore:

χ(E ,F ) =
∑
i

(−1)iexti(E,F ) =
∑
i

h2−i(X,E ∗⊗F ) ∼=
∑
j

hj(X,E ∗⊗F ) = χ(E ∗⊗F )

Notice, moreover, that if we denote with ? the usual involution on the even part of
the cohomology ring, namely:

? : H∗(X,Z) // H∗(X,Z)

|| ||

H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) H0(X,Z)⊕H2(X,Z)⊕H4(X,Z)

(r , ∆ , s) // (r , −∆ , s)

we can observe that:

• if u and v are vectors in the lattice, then (u, v) =
∫
X u

? · v, i.e., the top
degree part of the usual cup product of u and v . In fact, if u = (r,∆, s) and
v = (r′,∆′, s′) then:
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∫
X
u? · v = (r,−∆, s) · (r′,∆′, s′)

= [rr′ + r∆′ + rs′ −∆r′ −∆∆′ −∆s′ + sr′ + ss′]4
= rs′ −∆∆′ + sr′

= (u, v).

• If E is a locally free sheaf of rank n, then ch(E )? = ch(E ∗) where E ∗ =
Hom(E ,OX). Actually, we immediately have that rk(E ) = rk(E ∗), because the
rank of E as a locally free sheaf coincides with the rank of the corresponding
vector bundle; therefore:

rk(E ∗) = dimC(E )∗(x) = dimC(E (x))∗ = dimC(E (x)) = rk(E )

where x ∈ X and E (x) is the fiber of E at x, namely E (x) = Ex/MxEx and
Mx is the maximal ideal of OX,x. Moreover, using the fact that the Chern
character is a group homomorphism:

ch(E ∗)ch(E ) = ch(E ∗ ⊗ E ) = ch(On2
X ),

we get that:

(rk(E ∗), c1(E ∗), 1
2c1(E ∗)2 − c2(E ∗)) · (rk(E ), c1(E ), 1

2c1(E )2 − c2(E )︸ ︷︷ ︸
ch2(E )

) =

= (rk(E ∗)rk(E ), rk(E ∗)c1(E ) + rk(E )c1(E ∗), rk(E )ch2(E ∗) + c1(E )c1(E ∗) + rk(E ∗)ch2(E ))
= (n2, 0, 0)

therefore, from the fact that rk(E ) = rk(E ∗) we get:

rk(E ∗)c1(E ) + rk(E )c1(E ∗) = rk(E )c1(E ) + rk(E )c1(E ∗) = 0

which implies that c1(E ∗) = −c1(E ). Finally, the degree three - part of the
product, which must be zero for dimensional reasons, gives that:

c1(E ∗)ch2(E )+c1(E )ch2(E ) =

= c1(E ∗)(1
2c1(E )2 − c2(E )) + c1(E )1

2c1(E ∗)2 − c2(E ∗) =

= 1
2c1(E )3 − 1

2c1(E )3 − c1(E )c2(E ∗) + c1(E )c2(E ) = 0

and c2(E ∗) = c2(E ). This means that ch(E ∗) = (rk(E ),−c1(E ∗), 1
2c1(E )2 −

c2(E )) = ch(E )?.
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Proposition 4.1.2. The Mukai vector

v : K(X)χ(·,·) −→ H∗(X,Z)(·,·).

is an isometry.

Proof. Using what we discovered in the previous remarks:

(v(E ), v(F )) =
∫
X
v(E )?v(F )

=
∫
X
v(E ∗)v(F )

=
∫
X

ch(E ∗)
√

Td(X)ch(F )
√

Td(X)

=
∫
X

ch(E ∗)ch(F )Td(X)

=
∫
X

ch(E ∗ ⊗F )Td(X)
HRR= χ(X,E ∗ ⊗F )
= χ(E ,F )

Proposition 4.1.3. The Mukai vector identifies the numerical Grothendieck group
N (X) with the cohomology sublattice Z ⊕ NS(X) ⊕ Z ⊂ H∗(X,Z) = H0(X,Z) ⊕
H2(X,Z)⊕H4(X,Z)

Proof. We already know that the Mukai vector defines an isometry:

v : K(X) −→ H∗(X,Z) ,

so what we need to prove is that

• it factors through the quotient K(X)/K(X)⊥,

• it is injective

• its image is the lattice Z⊕NS(X)⊕ Z.

Let us prove the third point first, i.e., that for each u ∈ Z⊗NS(X)⊗Z, there exists
an object E ∈ K(X) such that v(E ) = u. Let u = (r,∆, s). The class ∆ belongs to
NS(X), which is, by definition, the image of the first Chern class

c1 : Pic(X) −→ H2(X,Z) ,

therefore we will always find a line bundle L such that c1(L ) = ∆. Now, if
r > 0, then the rank and the first Chern class of the sheaf L ⊕ Or−1

X will be the
required ones, i.e., the first two components of u. If r < 0, then we will need a two
terms-complex, i.e. E • = {... −→ E −1 −→ E 0 −→ E 1 −→ E 2 −→ ..., such that
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H i(E •) =


L if i = 0,
Or+1
X if i = 1,

0 otherwise
.

Indeed, recall that the rank and the Chern classes of a complex are the alternating
sums of the ranks and the Chern classes of its cohomologies. Finally, given the third
component of the Mukai vector, one can build a sheaf which gives no contribution to
the rank and to the first Chern class, but whose second Chern class is the required
one. Indeed, consider a sheaf F supported on a curve C contained in X, and let
i : C ↪→ X be the immersion. Then i∗F is a sheaf on X with both rank and first
Chern class zero. Then, again by Hirzebruch-Riemann-Roch, we have:

χ(X, i∗F ) =
∫
X

ch(F )Td(X) =
∫
X
−c2(F ) · (1 + c2(X)

12 ) = −c2(F )

but on the other hand χ(X, i∗F ) = χ(C,F ) which is equal, by Riemann-Roch for
curves, to d− g + 1, where d = deg(F ) and g is the genus of C. Therefore, being
d and g integers which can vary freely, we can produce a sheaf with fixed second
Chern class. Setting now G • := E • ⊕F , we have found the required object.
Now let us turn our attention to the other two points. It suffices to prove that:

1. K(X)⊥ is a subgroup of K(X) (it is obviously normal, because K(X) is
abelian);

2. K(X)⊥ = Kerv, where v is seen as a homomorphisms of abelian groups.

If 1) and 2) hold, then we can apply the first Theorem of homomorphism and conclude
that the map v factors through the quotient group N (X) = K(X)/K(X)⊥.

1. To show that K(X)⊥ is a subgroup of K(X), it suffices to prove that for each
pair of objects [E •], [F •] ∈ K(X)⊥, one has [E •]− [F •] ∈ K(X)⊥4. But we
know that −[F •] = [F •[1]], therefore [E •]− [F •] = [E • ⊕F •[1]]. Thus for
each G • ∈ K(X):

χ([E • −F •], [G •]) = χ([E • ⊕F •[1]], [G •])
= χ([E •], [G •])︸ ︷︷ ︸

||
0

+ χ([E •[1]], [G •])

= −χ([F •], [G •])
= 0 .

4Here I am using square parentheses because I want to stress the fact that we are dealing with
equivalence classes, and make a distinction between the classes and the objects representing them
in the derived category
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2. What we need to use is just that, if E ∈ K(X), then v(E ) = (0, 0, 0) if
and only if (v(E ), u) = 0 for each u ∈ Z ⊕ NS(X) ⊕ Z. If v(E ) = (0, 0, 0),
one obviously has (v(E ), u) = 0 for each u ∈ Z ⊕ NS(X) ⊕ Z. For the
converse, consider v(E ) = (r,∆, s) such that rs′ + r′s −∆ ·∆′ = 0 for each
(r′,∆′, s′) ∈ Z ⊕ NS(X) ⊕ Z. Suppose that (r,∆, s) 6= (0, 0, 0), and that, for
example, r 6= 0. But if (r′,∆′, s′) = (0, 0, s′) with s′ 6= 0, then

((r,∆, s), (r′,∆′, s′)) = rs′ 6= 0

which is a contradiction. Same goes for the other two components. But
this means that E ∈ Kerv ⇔ v(E ) = (0, 0, 0) ⇔ (v(E ), u) = 0 for each
u ∈ Z⊕NS(X)⊕ Z ⇔ (v(E ), v(F )) = 0 for each F ∈ K(X) ⇔ χ(E ,F ) = 0
for each F ∈ K(X) ⇔ E ∈ K(X)⊥.

We are now ready to give the basic ingredients of the main theorem of this section.

Definition 4.1.4. An isometry f : H∗(X,Z) −→ H∗(X,Z) is called a Hodge
isometry if it is a morphism of Hodge structures, i.e. f(Hp,q(X,Z)) = Hp,q(X,Z)
for all p, q. The group of Hodge isometries of a K3 surface X is denoted with
AutH∗(X,Z).

A classical result by Orlov states that every exact autoequivalence of D(X) induces
a Hodge isometry, i.e. there is a map

ω : AutD(X) −→ AutH∗(X,Z)

whose kernel is denoted Aut0D(X). Let us briefly outline how it comes out.
Consider an exact autoequivalence Φ ∈ AutD(X). Since an autoequivalence always
admits left and right adjoint, which both coincide with its inverse, Theorem 3.1.5
assures us that there exists an object E • ∈ D(X ×X) such that Φ ∼= ΦE • . Now,
consider the algebraic cycle:

Z := q∗
√

Td(X) · ch(E •) · p∗
√

Td(X).

This cycle defines an endomorphism of integral cohomology of X:

f : H∗(X,Z) −→ H∗(X,Z)

∪ ∪

v 7→ p∗(Z · q∗(v))

Therefore we have the following:5

5The result also holds in a more general case, i.e. when ΦE• is fully faithful, by a classical result
which shows that a fully faithful functor always admits left and right adjoints. However, for our
purposes it suffices to consider only the case of autoequivalences
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Proposition 4.1.5. If ΦE • ∈ AutD(X), then:

1. f is an isometry from the lattice associated to H∗(X,Z) to itself;

2. the inverse of f is equal to the homomorphism

f̂ : H∗(X,Z) −→ H∗(X,Z)

∪ ∪

v 7→ q∗(Z∨ · p∗(v))

where Z∨ := q∗
√

Td(X) · ch((E •)∨) · p∗
√

Td(X) .

Proof. Recall that the left and right adjoints of ΦE • are

ΦE •R
= q∗((E •)∨ ⊗ p∗(•))⊗ ωX [dimX]
= q∗((E •)∨ ⊗ p∗(•))⊗ OX [2]
= q∗((E •)∨ ⊗ p∗(•))[2]
= ΦE •L

.

Since ΦE • is an autoequivalence, the compositions ΦE •L
◦ ΦE •

∼= ΦE • ◦ ΦE •R
are

isomorphic to the identity IdD(X) ∼= ΦO∆ , with ∆ ⊂ X ×X is the diagonal, as usual.
Now, using the projection formula and Grothendieck-Riemann-Roch theorem, we
get:

f̂ ◦ f = IdH∗(X,Z)

Therefore, f̂ ◦ f is the identity and hence f is an automorphism of the lattice. Now,
taking u and v in H∗(X,Z), a little bit of computation gives:

(v, f(u)) =
∫
X
v∨ · p∗(p∗

√
Td(X) · ch(E •) · q∗

√
Td(X) · q∗(u))

=
∫
X
p∗(p∗(v∨) · q∗(u) · ch(E •) ·

√
Td(X ×X)) (projection formula)

=
∫
X×X

p∗(v∨) · q∗(u) · ch(E •) ·
√

Td(X ×X)

and similarly

(u, f̂(v)) =
∫
X×X

(q∗(u∨) · p∗(v) · ch(E •)? ·
√

Td(X ×X),
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hence (v, f(u)) = (f̂(v), u). Since f̂ ◦ f is the identity, we get:

(f(u), f(v)) = (f̂(f(u)), v) = (u, v).

Thus, f is an isometry.

Three interesting classes of exact autoequivalences are:

1. the shift functor [1] : D(X) −→ D(X);

2. pullbacks by automorphisms of X: if φ : X
∼=−→ X is an automorphism, then

φ∗ : Coh(X) −→ Coh(X) defines an autoequivalence of abelian categories
which can be extended to an exact autoequivalence of derived categories,
φ̂∗ : D(X) −→ D(X);

3. Twists by spherical objects.

Recall that an object E • ∈ D(X), where X is an arbitrary algebraic complex variety,
is called spherical if:

• E • ⊗ ωX ∼= E •;

• Exti(E •,E •) =
{
C if i = 0,dimX

0 otherwise

To each complex of locally free sheaves E • ∈ D(X) we can associate a functor which
is called twist functor TE • , defined as the Fourier-Mukai transform with kernel

P = Cone(η : (E •)∨ � E • −→ O∆)

where ∆ ⊂ X ×X is the diagonal, and the map η is the canonical pairing. Since
quasi-isomorphic complexes give rise to isomorphic Fourier-Mukai transforms, one
can use the fact that each coherent sheaf has a finite locally-free resolution to extend
the definition to each object E • ∈ D(X). If E • is spherical, moreover, a result shows
that the corresponding twist functor is an exact autoequivalence of D(X).
Let us call

TE • := ΦP

Then we want to give a more explicit characterization of TE •(F ). Consider an
arbitrary distinguished triangle:

E • −→ F • −→ G •
+1−→

Where E •,F • and G • are in D(X ×X). Then, if q and p are the two projections
respectively on the first and on the second factor and H • ∈ D(X), both

E • ⊗ q∗H • −→ F • ⊗ q∗H • −→ G • ⊗ q∗H • +1−→

p∗(E • ⊗ q∗H •) −→ p∗(F • ⊗ q∗H •) −→ p∗(G • ⊗ q∗H •) +1−→
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are distinguished triangle, because all the functors involved are exact functors of
triangulated categories, so we can conclude that

ΦE •(H •) −→ ΦF•(H •) −→ ΦG •(H •) +1−→

is a distinguished, as well. More explicitely, the distinguished triangle we are
interested in is:

(E •)∨ � E • −→ O∆ −→ Cone(η : (E •)∨ � E • −→ O∆) +1−→

Where, as usual, (E •)∨ := RH om(E •,OX). Therefore

Φ(E •)∨�E •(F •) −→ ΦO∆(F •) −→ TE •(F •)
+1−→

gives that TE •(F •) is a cone of some morphism. Now, by the general theory, we
know that

ΦO∆(F •) ∼= F •

and some computation gives that:

Φ(E •)∨�E (F ) =p∗(q∗(E •)∨ ⊗ p∗E • ⊗ q∗F •)
∼= p∗(q∗((E •)∨ ⊗F •)⊗ p∗E •)
∼= p∗(q∗(E •)∨ ⊗F •)⊗ E • (projection formula)
∼= (E •)∨ ⊗F • ⊗ E • (flat base change)
∼= Hom•(E •,F •)⊗ E • .

Therefore, for each F ∈ D(X), the twist TE (F ) of F by E fits into a distinguished
triangle:

Hom•(E •,F •)⊗ E • −→ F • −→ TE •(F •)

TE •(F •) = Cone(Hom•(E •,F •)⊗ E •) −→ F •),

where

Hom•(E •,F •)⊗ E •

stands for ⊕
i

Hom•(E •,F [i]•)⊗ E [−i]•.

Since E • is spherical, one has

Hom•(E •,E [i]•) = Exti(E ,E ) = C if i = 0, 2, 0 otherwise .

Therefore
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⊕
i

Hom•(E •,E [i]•)⊗ E [−i]• = C⊗ E • ⊕ C⊗ E [−2]• = E • ⊕ E [−2]•

So one looks for the cone of

E • ⊕ E [−2]• −→ E • −→? .

This triangle is the direct sum of two distinct triangles, 0 −→ E • −→ E •
+1−→ 0 and

E [−2]• −→ E [−2]• −→ 0 −→ E [−1]•, so

E [−2]• −→ E • ⊕ E [−2]• −→ E • −→ E [−1]•

therefore ? = E [−1]•, so the element TE •(E •) has infinite order. Moreover, ω maps
the autoequivalence TE • to a suitable riflection. Let us see why. First, we will need
to prove something about the behavior of the Mukai vector with respect to spherical
objects.

Lemma 4.1.6. If E • ∈ D(X) is stable for some stability condition on X, then

v(E •) ≥ 2

with equalty precisely when E • is spherical.

Proof. The lemma simply follows by Proposition 4.1.2 plus the fact that each object
which is stable for some stability condition is simple. But E • is simple if and
only if HomD(X)(E •,E •) = C (Schur’s Lemma) and, by Serre duality, one also has
Ext2(E •,E •) = C. Therefore, by Proposition ?? :

v(E •)2 = (v(E •), v(E •))
= χ(E •,E •)
= hom(E •,E •)− ext1(E •,E •) + ext2(E •,E •)
= 2− ext1(E •,E •)

therefore 0 ≤ ext1(E •,E •) = 2−v(E •)2 and v(E •)2 ≥ 2. If, moreover E • is spherical,
one has ext1(E •,E •) = 0 and therefore v(E •)2 = 2.

This lemma shows that the Mukai vector of each spherical object lies in the root
system:

∆(X) = {δ ∈ N (X) | (δ, δ) = 2}.

Proposition 4.1.7. The twist functor TE is mapped by ω to the reflection:

f(v) = v − (v(E ), v) v(E ) .
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Proof.
C := Cone(E ∨ � E −→ O∆)

E ∨ � E −→ O∆ −→ C
+1−→ (E ∨ � E )[1]

ch(C ) = ch(O∆)− ch(E ∨ � E )

By Grothendieck-Riemann-Roch applied to the diagonal embedding i : X
∼=
↪→ ∆ ⊂

X ×X:

ch(O∆) · Td(X ×X) = i∗(ch(OX) · Td(X)) = i∗Td(X).

Dividing by
√

Td(X ×X) and using the fact that i∗
√

Td(X ×X) = Td(X) yields:

ch(O∆) ·
√

Td(X ×X) = ch(O∆) · Td(X ×X) ·
√

Td(X ×X)
−1

= i∗Td(X) ·
√

Td(X ×X)
−1

= i∗(Td(X) · i∗
√

Td(X ×X)
−1

)

= i∗(Td(X) · (i∗
√

Td(X ×X))−1)
= i∗(Td(X) · Td(X)−1)
= i∗(1) .

Hence,

p∗

(
ch(O∆) ·

√
Td(X ×X) · q∗(v)

)
= p∗(i∗(1) · q∗(v)) = p∗(i∗(i∗q∗(v))) = v .

Finally, using the fact that ch(O∆) is an even cohomology class, so it commutes
with the first term, (?) one can compute the algebraic cycle corresponding to E :

Z = q∗
√
Td(X)ch(C )p∗

√
Td(X)

= q∗
√
Td(X)ch(O∆)p∗

√
Td(X)− q∗

√
Td(X) · ch(E ∨ � E ) · p∗

√
Td(X)

= ch(O∆)q∗
√
Td(X)p∗

√
Td(X)− q∗

√
Td(X) · ch(q∗E ∨ ⊗ p∗E ) · p∗

√
Td(X)

= ch(O∆) ·
√

Td(X ×X)− q∗
√
Td(X) · ch(q∗E ∨) · ch(p∗E ) · p∗

√
Td(X)

= ch(O∆) ·
√

Td(X ×X)− q∗
√
Td(X) · q∗ch(E ∨) · p∗ch(E ) · p∗

√
Td(X)

= ch(O∆) ·
√

Td(X ×X)− q∗(ch(E ∨) ·
√
Td(X)) · p∗(ch(E ) ·

√
Td(X))

= ch(O∆) ·
√

Td(X ×X)− q∗v(E ∨) · p∗v(E )



4.1 Foundational material 69

f(v) = p∗(Z · q∗(v))

= p∗(ch(O∆) ·
√

Td(X ×X) · q∗(v))− p∗(q∗v(E ∨) · p∗v(E ) · q∗(v))
= v − p∗q∗(v(E ∨) · v)v(E )

= v − (
∫
X
v(E )? · v) · v(E )

= v − (v(E ), v) v(E ) .

Thus the functor T 2
E • defines an element of Aut0D(X) := Kerω.

We now want to examine the action of the group AutD(X) on the space of stability
conditions Stab(X). A stability condition is said to be numerical if its central charge
takes the form

Z(E •) = (π(σ), v(E •))

for some vector π(σ) ∈ N (X)⊗ C, where

π : Stab(X) −→ N (X)⊗ C

is the map sending a stability condition to its central charge, which is continuous.
To describe the image of this map, define an open subset:

P(X) ⊂ N (X)⊗ C

consisting of those vectors whose real and imaginary parts span a positive-definite
two-planes in N (X)⊗ R, i.e.

P(X) := {v ∈ N (X)⊗ C | (•, •)|SpanR{<v,=v}
is positive definite }

This space has two connected components, which are exchanged by complex conjuga-
tion. Notice that GL+(2,R) acts freely on P(X) by simply identifying N (X)⊗ C
with N (X)⊗ R. A section of this action is provided by the submanifold:

Q(X) = {v ∈P(X) | (v, v) = 0, (v,−v) > 0 and r(v) = 1}

which can be identified with

{D + iF ∈ NS(X)⊗ C | F 2 > 0}

via the exponential map
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D + iF 7→ v = eD+iF =
(

1, D + iF,
1
2(D2 − F 2) + i(D · F )

)
.

Now, let P+(X) ⊂P(X) be the connected component containing the image of the
exponential map for F ∈ NS(X)⊗ R ample. For each δ ∈ ∆(X) let

δ⊥ = {v ∈ N (X)⊗ C | (v, δ) = 0} ⊂ N (X)⊗ C.

We state one of the fundamental theorems of the theory:

Theorem 4.1.8. There is a connected component Stab•(X) ⊂ Stab(X) which is
mapped by π onto the open subset

P+
0 (X) = P+(X) \

⋃
δ∈∆(X)

δ⊥ ⊂ N (X)⊗ C.

Moreover, the induced map

π|Stab•(X) : Stab•(X) −→P+
0 (X)

is a covering map, and the subgroup of Aut0D(X) which preserves the connected
component Stab•(X) acts freely on it and is the group of deck transformations of π.

Finally, one would like to describe the group AutD(X). An argument by Orlov
shows that the image of the map ω contains the index-two subgroup

Aut+H∗(X,Z) ⊂ AutH∗(X,Z)

consisting of the elements that do not exchange the connected components of P(X).
The following conjecture gives an interesting characterization of all the objects
involved:

Conjecture 4.1.9. The action of the group AutD(X) on Stab(X) preserves the
connected component Stab•(X). This connected component is simply connected, and
therefore there is a short exact sequence of groups:

1 −→ π1(P+
0 (X)) −→ AutD(X) ω−→ Aut+H∗(X,Z) −→ 1.

We will now give some results which will allow us to describe the wall-and-chamber
structure of Stab(X).

Lemma 4.1.10. Let A ⊂ D(X) be the heart of a boundet t-structure on D(X).
Then if

0 −→ A −→ B −→ C −→ 0



4.1 Foundational material 71

is a short exact sequence in A such that HomD(X)(A,C) = 0, the following inequality
holds:

ext1(A,A) + ext1(C,C) ≤ ext1(B,B) .

Proof. Given E,F ∈ A , write

(E,F )i := exti(E,F ).
Then (E,F )i = 0 unless i = 0, 1, 2 and, by Serre duality , (E,F )i = (F,E)2−i.
Recall that the Euler bilinear form splits on short exact sequences, i.e.

χ(A,X) + χ(C,X) = χ(B,X)
for each X ∈ A . We make the computation when X = A,B,C:

2(A,A)0 − (A,A)1 + (C,A)0 − (C,A)1 + (A,C)0 = (B,A)0 − (B,A)1 + (A,B)0

(A,C)0 − (A,C)1 + (C,A)0 + 2(C,C)0 − (C,C)1 = (B,C)0 − (B,C)1 + (C,B)0

(A,B)0 − (A,B)1 + (B,A)0 + (C,B)0 − (C,B)1 + (B,C)0 = 2(B,B)0 − (B,B)1

then, summing up and considering that (A,C)0 = 0, we get:

2(A,A)0 − (A,A)1 + (C,A)0 − (C,A)1 − (A,C)1 + (C,A)0 + 2(C,C)0−
− (C,C)1 + (A,B)0 − (A,B)1 + (B,A)0 + (C,B)0 − (C,B)1 + (B,C)0 =

= (B,A)0− (B,A)1 + (A,B)0 + (B,C)0− (B,C)1 + (C,B)0 + 2(B,B)0− (B,B)1

which gives

2(A,A)0 + 2(C,A)0 − 2(C,A)1 + 2(C,C)0 − (A,A)1 − (C,C)1 =
= 2(B,B)0 − (B,B)1 ≤ 2(B,B)0 − (A,A)1 − (C,C)1

and finally

(A,A)0 + (C,A)0 − (C,A)1 + (C,C)0 ≤ (B,B)0 .

This is equivalent to the inequality we want to prove, and follows by the existence
of the short exact sequence

0 −→ Hom(C,A) −→ End(B) −→ End(A)⊕ End(C) −→ Ext1(C,A)
to show where it comes from, we can observe that, by the hypotesis (A,C)0, each
endomorphism of B induces an endomorphism of the entire triangle A −→ B −→
C

+1−→, seen as a triangle in the whole derived category. Actually, one has:

A
α // B

β //

f
��   

C
+1 //

A
α // B

β // C
+1 //
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where the dotted arrow is just the composition. But this means that an arrow in
End(C) is induced:

A //

0 ��@@@@@@@@ B

��

// C
+1 //

~~
C .

Moreover, by the third axiom of triangulated categories, a couple of maps B −→ B
and C −→ C can be completed to a map of the whole triangle, i.e., an arrow A −→ A
is induced.

Recall Theorem 2.4.8:

Theorem 4.1.11. For each connected component Stab∗(X) ⊂ Stab(X) there exists
a linear subspace V ⊂ N (X)⊗ C such that the map

π : Stab∗(X) −→ N (X)⊗ C

is a local homeomorphism on an opens subset of the subspace V .

In all known examples, the subspace V is actually the whole N (X)⊗ C, but the
fact that a general result has not been proved jet, is useful to give the following
definition:

Definition 4.1.12. A connected component Stab∗(X) ∈ Stab(X) of the space
of stability condition is called full if the subspace in the theorem above is the
whole N (X) ⊗ C. A stability condition σ ∈ Stab∗(X) ⊂ Stab(X) is called full if
σ ∈ Stab∗(X) for some full connected component Stab∗(X).

Notice that full stability conditions are preserved by autoequivalences.
We now give a definition whose utility will appear later.

Definition 4.1.13. A stability condition σ = (Z,P) ∈ Stab(X) is called discrete
if the image of the central charge Z : K(X) −→ C is a discrete subgroup.

Lemma 4.1.14. Fix 0 < ε < 1
2 , and let σ = (Z,P) be discrete. Then for all φ ∈ R,

the quasi-abelian category P((φ− ε, φ+ ε)) is of finite length. In particular, σ is
locally finite.

Proof. Fix φ ∈ R and call A := P((φ− ε, φ+ ε)). The central charge of an object
A ∈ A , by definition, lies in the sector

S = {z = reiπφ | r > 0 and φ− ε < ψ < φ+ ε}

because it sends in S all the semistable factors in the Harder-Narasimhan filtration
of A. But S is strictly contained in a half-plane of C, because we have chosen ε to
vary in (0, 1

2). Define a real-valued function

f : K(X) −→ R

A 7→ <(e−iπφZ(A)) .

Then f(A) > 0 for all nonzero A. Indeed
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f(A) = <(e−iπφZ(A))
= <(e−iπφr(A)eiπφ(A))
= <(r(A)eiπ(φ(A)−φ)

but φ(A)− φ ∈ (−ε, ε) ⊂ (−1
2 ,

1
2), therefore eiπ(φ(A)−φ lies in the first quadrant of

the complex plane, which implies that f(A) > 0.
Moreover, f splits on strict short exact sequences in A : if 0 −→ A −→ B −→ C −→
0 is a strict short exact sequence in A , then f(B) = f(A) + f(C). Indeed we have
that:

Z(B) = Z(A) + Z(C);
e−iπφZ(B) = e−iπφZ(A) + e−iπφZ(C);
<(e−iπφZ(B)) = <(e−iπφZ(A)) + <(e−iπφZ(C));
f(B) = f(A) + f(C).

Therefore, for each E ∈ A , the central charges of its subobjects and quotients lie in
the bounded region

{z ∈ S | <(e−iπφz) < f(E)} .

The hypoteses that σ is discrete implies that there is only a finite number of
possibilities and, by the fact that each subobject must be sent by f to a strictly
smaller point belonging to the segment (0, f(E)), each chain of subobjects must be
finite (same goes for quotients). Therefore, σ is locally finite.

Lemma 4.1.15. Let σ ∈ Stab(X) be a full stability condition, and fix 0 < ε < 1
2 as

above. Then for each φ ∈ R the quasi-abelian category P((φ− ε, φ+ ε)) is of finite
length.

4.2 Constructing stability conditions
Recall, by the previous chapter, that the classical slope function for torsion-free
sheaves F is given by:

µH(F ) = c1(F ) ·H
rk(F )

for each ample divisor H. Therefore, the notion of stability strongly depends on the
choice of an ample divisor on the surface. The associated notion of semistability is
the usual one, i.e. a torsion-free sheaf F is semistable if for each proper subsheaf
G ⊂ F , one has µH(G ) ≤ µH(F ). Therefore, we can build the Harder-Narasimhan
filtration with respect to H for each coherent sheaf E :
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E0 ⊂ E1 ⊂ ... ⊂ En = E

where:

1. E0 = tors(E );

2. For each i = 1, ..., n, the sheaf Fi := Ei/Ei−1 is torsion free and H-semistable;

3. The slopes form a strictly decreasing sequence: µ+
H(E ) := µH(F1) > µH(F2) >

... > µH(Fn) =: µ−H(E ).

The existence and the uniqueness of the Harder-Narasimhan filtration have been
proved in the previous chapter.

Remark 4.2.1. For any torsion sheaf G , the H-N filtration is 0 ⊂ G . Therefore, there
are no semistable quotients we can use to compute slopes, and, by convention, we
set µH(G ) = +∞.

Remark 4.2.2. We could of course associate to the slope function defined above a
family of group homomorphisms on the abelian category Coh(X):

ZH : K(Coh(X)) −→ C

E 7→ r(E )eiπµH(E )

for each torsion-free sheaf E (of course an arbitrary coherent sheaf will be mapped
to the sum of the images of its semistable torsion-free quotients), each one given
by a different choice of r(E ). However, notice that this one cannot be a Bridgeland
stability function: in fact, by definition, the positive cone should be mapped to
the upper-half plane H, thus the image of each nonzero object should be a vector
of H, i.e., with nonzero slope. But the group homomorphism defined above sends
the sheaf OS to a point on the positive half of the real line (c1(OS) = 0, therefore
µH(OS) = 0, too) which does not belong to H.

Let us now outline a strategy to build a class of Bridgeland stability conditions and
to study semistable objects. First, we need to take a pair of R- divisors D,F , with
F ample. Consider the following group homomorphism:

Z(D,F ) : K(Coh(X)) −→ C

such that

Z(D,F )([E ]) := −
∫
S
e−(D+iF )ch([E ])

√
Td(X)

for each E ∈ Coh(X). We can extend it to the Grothendieck’s group of the whole
derived category, K(D(X)), by simply setting:

Z(D,F )([E •]) :=
∑
i

(−1)iZ(D,F )(H i(E •)).
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Let us write the central charge in a more explicit way6. As we know, the expression
e−(D+iF ) stands for the vector (1,−(D+iF ), 1

2(D2−F 2)+iD·F ) = (1, D+iF, 1
2(D2−

F 2) + iD · F )∗. Therefore the central charge Z(D,F ) simply reads:

Z(D,F )(E •) = −(eD+iF , v(E •)).

Therefore, for an arbitrary complex E •, supposing that v(E •) = (r,∆, s) one has:

Z(E •) = ((1,−D + iF,
1
2(D2 − F 2) + iD · F ), (r,∆, s))

= ((D + iF ) ·∆− s− r

2(D2 − F 2)− riD · F

= D ·∆ + iF ·∆− s− r

2(D2 − F 2)− irD · F

= D ·∆− r

2(D2 − F 2)− s+ iF (∆− rD).

If r 6= 0:

Z(E •) = 1
2r (2rD ·∆− r2(D2 − F 2)− 2rs) + iF (∆− rD)

= 1
2r (2rD ·∆− r2D2−∆2 + ∆2 + r2F 2 − 2rs) + iF (∆− rD)

= 1
2r ((∆− 2rs)2 + r2F 2 − (∆− rD)2) + iF (∆− rD)

while if r = 0, just the term (D ·∆− s) + iF · (∆− rD) survives.
Second, we need a slicing which must be compatible with Z(D,F ) in order to create
a Bridgeland slope function. We already know, by Proposition 2.3.5, that a stability
condition can be given as a pair (Z,P), where Z is a central charge and P is
a slicing compatible with Z, as well as a pair (Z,A ), where A is the heart of a
bounded t-structure on the derived category D(S): we choose, in this case, to look
for the heart of a suitable t-structure, and we will build it as a tilt. If A is the heart
of a t-strutcure on a given triangulated category D , we can define its right and left
tilt respectively as:

A # := {E ∈ D | H i
A (E) = 0 ∀i 6= −1, 0 , H0

A (E) ∈ T , H−1
A (E) ∈ F}

A b := {E ∈ D | H i
A (E) = 0 ∀i 6= 0, 1 , H0

A (E) ∈ T , H1
A (E) ∈ F}

where (T ,F ) is a torsion pair, i.e. a pair of full additive subcategories T ,F ⊂ A
such that:

1. Hom(T, F ) = 0 for each T ∈ T , F ∈ F ;
6Notice that here we have dropped square parentheses because we did not want notation to

be too heavy; however, from now on we will write E • to indicate its class [E •] ∈ K(X), unless
differently specified.
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2. For each E ∈ A , there exists a distinguished triangle T −→ E −→ F
+1−→ such

that T ∈ T , F ∈ F .

In our case, we want to tilt with respect to the heart of the trivial t-structure
A := Coh(X). We define a suitable torsion pair as:

T := {torsion sheaves} ∪ {E ∈ A | µH(E ) > D · F}

F := {E ∈ A | µH(E ) ≤ D · F}

and the corresponding tilted heart will be:

A #
(D,F ) := {E • ∈ D(S) | H i(E •) = 0 ∀i 6= −1, 0 , H−1(E •) ∈ F , H0(E •) ∈ T }

We want to show first that the pair (Z(D,F ),A
#

(D,F )) makes a Bridgeland slope
function. To prove that it actually is a stability condition, we will need to show that
the central charge has the HN property, which will require some additional work.

Proposition 4.2.3. The pair (Z(D,F ),A
#

(D,F )) is a Bridgeland slope function.

Proof. We need to show that for each E • ∈ A #
(D,F ) one has that Z(D,F )(E •) ∈ H.

Notice that if E • ∈ A #
(D,F ) there is a short exact sequence (in A #

(D,F )):

0 −→ H−1(E •)[1] −→ E • −→ H0(E •) −→ 0 .

In fact, suppose that the equivalence class E in the derived category D(S) is
represented by the complex:

E • = {... d
−3
−→ E −2 d−2

−→ E −1 d−1
−→ E 0 d0

−→ E 1 d1
−→ ...}

Then the fact that E belongs to A # implies that E is isomorphic to a complex
which looks like the following one:

... −→ 0 −→ ...Cokerd−2 d−2
−→ E −1 d−1

−→ E 0 d0
−→ Imd0 d1

−→ 0 −→ ...

Then the complex H−1(E •)[1] is isomorphic to the complex

... −→ 0 −→ ...Cokerd−2 d−2
−→ E −1 d−1

−→ Imd−1 −→ 0 −→ ...

which naturally embeds in E •:

... // Cokerd−2 d−2
//

id
��

E −1 d−1
//

id
��

Imd−1 d0
//

i
��

0 //

��

0 //

��

...

... // Cokerd−2 d−2
// E −1 d−1

// E 0 d0
// Imd0 d1

// 0 // ...

• The first square obviously commutes;

• The second square commutes by definition: indeed, each of the two ways lead
to Imd−1 by d−1;
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• The third square commutes by exactness: one of the first composition is
obviously zero, and the other one is zero, too, because the image of d−1 is
contained in the kernel of d0.

The quotient is simply given by the complex

... // Cokerd−2 d−2
//

id
��

E −1 d−1
//

id
��

Imd−1 d0
//� _

i
��

0 //

��

0 //

��

...

... // Cokerd−2 d−2
//

��

E −1 d−1
//

��

E 0 d0
//

��

Imd0 d1
//

��

0 //

��

...

... // 0 // 0 // Cokerd−1 f // Imd0 g // 0 // ...

whose cohomology is exact the one we wanted: indeed, if we call Q• the quotient
complex, then

H0(Q•) = Kerf = Kerd0/Imd−1 ∼= H0(E •)

H1(Q•) = Imd0/Imf = Imd0/Imd0 = 0

therefore, the complex Q is quasi-isomorphic to the complex {... −→ H0(E •) −→
...} = H0(E •).
Now, by the fact that distinct triangles split in K(X) and that Z is a group
homomorphism, it will suffices to show that:

1. If E ∈ F , then Z(E [1]) ∈ H;

2. if E ∈ T , then Z(E ) ∈ H.

Remark 4.2.4. Recall that Z(E [1]) = −Z(E )!
If E ∈ T , then either E is torsion or the slope of its semistable quotients is strictly
greater then D ·F . For what concerns the point 2), therefore, we need to distinguish
some cases:

E is torsion, dimSupp(E ) = 1 . Then

r(E ) = 0 ⇒ Z(E ) = (C1(E ) ·D − s) + i(c1(E ) · F ).

But c1(E )·F > 0 because c1(E ) is effective, therefore Z(E ) lies in the upper-half
plane.

E is torsion, dimSupp(E ) = 0 . Then =Z(E ) = 0, because c1(E ) = 0. So we just
need to check that the real part of Z(E ) is negative. But:

<Z(E ) = −s = −ch2(E ) = c2(E )
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E is not torsion . Then we can assume E to be torsion free, as it suffices to show
that each of the semistable quotients of E lie in the upper-half plane. We are
now able to consider the slope of E with respect to F, which is subjected to
the condition:

µF (E ) > D · F .

But we know that µF (E ) = c1(E )·F
r(E ) , therefore the condition becomes c1(E ) ·

F − r(E )D · F > 0, i.e. (c1(E ) − r(E )D) · F > 0. By the explicit formula
which gives the central charge, (c1(E )− r(E )D) · F = =Z(E ), which implies
that Z(E ) lies in the upper-half plane.

If we now suppose E ∈ F to be torsion-free again (the motivation is exactly the
same), we have two cases:

µF (E ) < D · F . Then, as above, c1(E )·D
r(E ) < D · F , which equals

c1(E ) · F − r(E )D · F = (c1(E )− r(E )D) · F < 0 .

Therefore =Z(E ) < 0 and =Z(E [1]) = −=Z(E ) > 0

µF (E ) = D · F . Again, we have =Z(E [1]) = 0, and by Hodge Index Theorem,
using the fact that F is ample:

(c1(E )− r(E )D) · F = 0 =⇒ (c1(E )− r(E )D)2 ≤ 0.

4.3 The covering map
The following lemma is slightly technical, so we will not prove it, but it is useful.

Lemma 4.3.1. Let || · || be a norm on the complexified numerical Grothendieck
group N (X)⊗ C. Then, for each vector α ∈P(X) there exists a constant rα > 0
such that

|(u, v)| ≤ rα||u|||(α, v)|
for each u ∈ N (X) ⊗ C and v ∈ N (X) ⊗ R such that (v, v) ≥ 0. If α ∈ P0(X),
moreover, one can choose rα such that the inequality holds for each u ∈ N (X)⊗ C
and for each v ∈ ∆(X).

Lemma 4.3.2. If α ∈P0(X) and m > 0 is a constant, then there are only finitely
many elements v ∈ N (X)suchthatv2 ≥ 2 and |(α, v)| ≤ m.

Proposition 4.3.3. The subset P0(X) ⊂ N (X)⊗ C is open, and the restriction
of the natural map:

π|π−1(P0(X)) : π−1(P0(X)) −→P0(X)
is a covering map.
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Proof. There are two assertions to prove:

P0(X) is open . What we want to see is that for each vector α ∈ P0(X) there
is an open subset which contains α and which is itself contained in P0(X).
Let us fix a norm || · || on the finite-dimensional vector space N (X)⊗ C, and
consider a vector α ∈P0(X). Lemma 4.3.1 assures us that there exists rα > 0
such that the inequality

|(u, v)| ≤ rα||u|||(α, v)|

holds for each u ∈ N (X) ⊗ C and for each v ∈ ∆(X) such that (v, v) ≥ 0.
Now for each ε > 0 define the subset:

Bε(α) =
{
β ∈ N (X)⊗ C | ||β − α|| < ε

rα

}
⊂ N (X)⊗ C

which is obviously open in N (X)⊗ C. We want to show that, for a suitable
choice of ε > 0, the subset Bε(α) ⊂P0(X). Take β ∈ Bε(α). Then one has:

|(β, v)− (α, v)| = |(β − α, v)|
≤ rα||β − α|||(α, v)|
< ε|(α, v)|

for each v ∈ ∆(X). This means that if ε < 1, then β spans a positive-
definite two-plane in N (X)⊗ R and (β, v) 6= 0 for each v ∈ ∆(X). Therefore
Bε(α) ⊂P0(X).

π|π−1(P0(X)) is a covering map . Take σ ∈ Stab(X) such that π(σ) = α. We can
define a subset

Cε(σ) =
{
τ ∈ π−1 (Bε(α)) | d(σ, τ) < 1

2

}
⊂ Stab(X)

where d is the distance we defined in the second chapter on the space Stab(X).
Now, Lemma 4.1.6 tells us that if E • ∈ D(X) is a stable object, then
(v(E •), v(E •)) ≥ 2 ≥ 0, therefore the following inequality holds:

|(β, v(E •))− (α, v(E •))| < ε|(α, v(E •))|

Theorem 2.4.10 allows us to conclude that for small enough ε, the map

π|Cε(σ) : Cε(σ) −→ Bε(α)

is onto, and hence, by Theorem 4.1.11 and Proposition 2.4.9, a homeomorphism.
It follows from this that every stability condition is full. Fix a positive real
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number η < 1
8 , and suppose that ε < sin(πη)

2 . Then, by Theorem 2.4.10 and
Lemma
for each σ ∈ π−1(α), the subset Cε(σ) is mapped homeomorphically by π onto
Bε(σ). The only thing we need to check is that there is a disjoint union

π−1(Bε(α)) =
⋃

σ∈π−1(α)
Cε(σ).

This simply follows. Take τ ∈ π−1(Bε(α)), i.e. a stability condition τ such
that π(τ) = β ∈ Bε(α). If E • is τ -stable, then

|(β, v(E •))− (α, v(E •))| < ε|(α, v(E •))|

which implies that

|(β, v(E •))− (α, v(E •))| < ε

1− ε |(β, v(E •))| < 2ε|(β, v(E •))|.

Applying Theorem 2.4.10 again gives that there is a stability condition σ ∈
π−1(α) such that d(σ, τ) < η, and then τ ∈ Cε(σ).

Definition 4.3.4. A connected component Stab∗(X) ⊂ Stab(X) is called good if it
contains a stability condition σ such that π(σ) ∈P0(X). A stability condition is
called good if it lies in a good connected component

Remark 4.3.5. A good connected component is also full. Indeed, by Proposition
4.3.3, the image of the map

π : Stab∗(X) −→ N (X)⊗ C

contains one of the two connected components of P0(X), which is not contained in
any linear subspace of N (X)⊗ C.
Remark 4.3.6. AutD(X) acts on the set of good stability conditions, because it acts
as an isometry preserving thus the fact that the image of a stability condition lies in
P0(X).

4.4 Wall-and-chamber

What we want to show in this section is that if a connected component Stab∗(X) ⊂
Stab(X) is good, then it has a wall-and chamber structure. More precisely, if we
consider a compact subset B ⊂ Stab∗(X) and a finite set of objects S ⊂ D(X), then
there is a finite collection of walls, i.e., submanifolds of codimension one, such that if
one deforms a stability condition σ ∈ Stab∗(X), then one of the elements if S which
is stable can only become unstable as σ crosses one of the walls. However, the set
S needs not to be finite: the hypotesis can be weakened by simply asking that its
elements have bounded mass.
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Definition 4.4.1. A set of objects S ⊂ D(X) is said to have a bounded mass in a
connected component Stab∗(X) ⊂ Stab(X) if

sup{mσ(E •) | E • ∈ S} < +∞
for some σ = (Z,P) ∈ Stab∗(X). The mass of E • is defined to be the positive real
number mσ(E •) = ∑

i |Z(A •i )|, where the A •i ’s are the semistable quotient in the
Harder-Narasimhan filtration of E •. Note that the fact that Stab∗(X) is connected
implies that d(σ, τ) < +∞ for all σ, τ ∈ Stab∗(X), so if that condition holds for
some σ ∈ Stab∗(X), then it holds for all the stability condition in that connected
component.

The following lemma is very important:

Lemma 4.4.2. Suppose that the subset S ∈ D(X) has bounded mass in some good
component Stab∗(X). Then the set

{v(E •) | E • ∈ S}
is finite.

Proof. Simply use the definition of mass: by assumption, there exist a σ ∈ Stab∗(X)
such that π(σ) ∈ P0(X) and an m > 0 such that mσ(E •) < m for each E • ∈ S.
This implies that

mσ(E •) =
∑
i

|Z(A •i )| < m.

By the fact that for each stable object A • one has v(A •)2 ≥ 2 (Proposition 4.1.6)
and Lemma ???
it follows that there are only finitely many possibilities for the Mukai vectors of the
semistable factors, then there are also only finitely many possibilities for the Mukai
vector of E •.

Now we can better analyze the wall-and-chamber structure which we have announced
in the introduction:

Proposition 4.4.3. Let S ∈ D(X) be a set of objects with bounded mass in a good
connected component Stab∗(X) ⊂ Stab(X) and B ⊂ Stab∗(X) be a compact. Then
there is a finite collection:

{Wγ}γ∈Γ

of real codimension-one submanifolds of Stab∗(X), which need not to be closed, such
that any connected component

C ⊂ B \
⋃
γ∈Γ

Wγ

has the following property: if E • ∈ S is semistable in σ for some σ ∈ C, then E • is
also stable for all τ ∈ C and if, moreover, E • ∈ S has primitive Mukai vector (i.e.,
v(E •)Z is a primitive sublattice of the lattice associated to H∗(X,Z)), then E • is
τ -stable for all τ ∈ C.



82 4. Stability conditions on K3 surfaces

Proof. Define

T ⊂ D(X) := {0 6= A • ∈ D(X) | mσ(A •) ≤ mσ(E •) for some σ ∈ B and E • ∈ S}.

By the fact that B is compact, we can say that the quotient mτ (E •)
mσ(E •) is uniformly

bounded for each σ, τ ∈ B, so the subset T ⊂ D(X) has bounded mass in Stab∗(X).
Notice that all the semistable factors of the elements in S lie in T . Now, applying
the previous Lemma, we can consider the finite set

{vi, i ∈ I | vi = v(E •) for some E • ∈ T}

and the set of indices

Γ = {(i, j) ∈ I × I | vi and vj do not lie on the same real line in N (X)⊗ R}.

Finally, take γ = (i, j) ∈ Γ and define

Wγ =
{
σ = (Z,P) ∈ Stab∗(X) | Z(vi)

Z(vj)
∈ R>0

}
.

Since Stab∗(X) is a good component, which implies that it is also full, then the map
π : Stab∗(X) −→ N (X) ⊗ C is a local homeomorphism. Since Wγ is the inverse
image under π of an open subset of a real quadric in N (X)⊗ C, then it is a real
codimension-one submanifold of Stab∗(X).
Now, if C ⊂ B is a connected component of

B \
⋃
γ∈Γ

Wγ ,

and E • ∈ S, we can consider a subset V ⊂ C

V := {σ ∈ C | E • is σ − semistable }

assuming V to be nonempty. We want to show that V is open in C, and that V
coincides with C. Suppose that σ = (Z,P) ∈ V and E • ∈ P(φ) for some φ ∈ R.
Now, take η ∈ (0, 1

8) such that the open neighborhood

U = {τ ∈ Stab(X) | d(σ, τ) < η}

is entirely contained in C. The assumption that η ∈ (0, 1
8) tells us that if A • is a

semistable factor of E • for some stability condition belonging to U , then A • lies in
the abelian category

A = P

((
φ− 1

2 , φ+ 1
2

])
⊂ D(X)
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and that the central charge of E • with respect to some τ = (W,Q) ∈ U lies in the
half-plane

Hφ =
{
reiπψ | r > 0 and φ− 1

2 < ψ < φ+ 1
2

}
.

Suppose that E • is unstable for some σ′ = (Z ′,P ′) ∈ U . Then there is a semistable
factor A • of E • with respect to σ′ which is a subobject of E • in the category A and
which satisfies =Z

′(A •)
Z′(E •) > 0. As τ varies in U , then the complex numbers W (A •)

and W (E •) remain in Hφ and therefore, since U is a connected component of

B \
⋃
γ∈Γ

Wγ ,

and A •, E • ∈ T , then =W (A •)
W (E •) > 0 for all τ = (W,Q), which contradicts the fact

that E • is σ-semistable. Now, suppose that E • ∈ S has primitive Mukai vector, and
suppose that E • is semistable but not stable for some σ ∈ B. Each stable factor of
E • has mass less then E •, so its Mukai vector belongs to the set

{vi, i ∈ I | vi = v(E •) for some E • ∈ T}.

Since v(E •) is primitive, not all the Mukai vectors of the stable factors of E • are
multiples of the Mukai vector of E • But the phases of all the stable factors are the
same, so one must have σ ∈Wγ for some γ = (i, j) ∈ Γ.





Ringraziamenti

Questi ringraziamenti, probabilmente, dovrebbero essere più snelli e formali, come si
addice ad una seria tesi specialistica. Ma, come tutte le cose migliori, sono venuti
da sé, e così rimarranno.
Questa tesi ha richiesto parecchio tempo ed altrettante energie, ma mi ha donato
molto più di quanto abbia effettivamente preteso. Mi ha donato la capacità di
mettermi a confronto con me stessa, la comprensione di cosa voglia dire fissare per
ore una lavagna vuota e vedere tutto un mondo che si muove, la gioia nel risolvere
con le mie sole forze un esercizio, la consapevolezza di quanto bella possa essere
la matematica quando riusciamo a farla nostra e a modellarla con le nostre mani.
Alcune persone hanno lasciato il proprio marchio su queste pagine, e per questo
desidero ringraziarle.
Ci sono, in particolar modo, due persone senza le quali tutto questo non sarebbe
avvenuto o, per lo meno, sarebbe avvenuto in modo molto diverso.
Grazie ad Enrico Arbarello per i piccoli e i grandi gesti con cui ha illuminato i miei
dubbi e le mie giornate. Grazie per avermi mostrato che il nostro lavoro va vissuto
con passione ed allegria, e che il contorno, per quando indispensabile possa apparire,
è in realtà del tutto insignificante. Grazie per le ore trascorse con me davanti ad
una lavagna, quando la stanchezza scompariva magicamente e mi sembrava di capire
davvero cosa vuol dire fare il matematico. Grazie per avermi permesso di spiegarti
ciò che non sapevi, e per aver permesso anche a me stessa di capire cosa non sapevo.
Grazie per esserci sempre stato, anche quando avevo semplicemente bisogno di sentire
la tua voce. Grazie tutto quello che mi hai insegnato, di cui la matematica è solo una
parte. Grazie per la pazienza con cui hai tollerato i lati peggiori del mio carattere.
Grazie per avermi sempre insegnato con le azioni, più che con le parole. Grazie
perché proverò sempre a camminare sulle orme che i tuoi passi hanno lasciato.
Grazie a Domenico Fiorenza, per l’entusiasmo, la passione e la curiosità con cui
riesce ad animare anche il calcolo all’apparenza più insignificante. Grazie, perché hai
giocato insieme a me con la cassetta degli attrezzi. Grazie per aver sempre voluto
andare in fondo, insegnandomi a non temere di mettere tutto in discussione. Grazie
per aver sempre trovato il senso più profondo di ogni costruzione e di ogni oggetto.
Grazie per tutte le volte che abbiamo circumnavigato il Castelnuovo, cercando
spiegazioni che ci sfuggivano. Grazie, perché ogni volta che faccio una domanda, tu
rispondi, e nel modo più completo e convincente possibile. Grazie, perché mi hai
fatto desiderare, in futuro, di lavorare con persone come te.
Grazie al professor O’Grady, per avermi insegnato che della matematica bisogna
convincersi da soli (possibilmente ad ora di pranzo), e per i suoi coloratissimi disegni,
che riescono sempre a sciogliere il dubbio giusto al momento opportuno. Grazie
perché, tutte le volte che provo a dimostrare qualcosa, includo sempre l’ipotesi in cui

85



86 4. Ringraziamenti

un qualche insieme è vuoto. Grazie perché tutte le volte che la vedo fermo, a fissare
un punto indefinito, vorrei vedere anche solo una piccola parte di quello che vede lei.
Grazie al professor De Concini, per aver assistito ai miei seminari con partecipazione
e curiosità, e perché mi ha insegnato che un dubbio espresso ad alta voce riesce
più facilmente a diventare una certezza. Grazie ad entrambi per aver scritto le mie
lettere di presentazione, che mi permetteranno di non morire di fame (almeno per i
prossimi cinque anni!).
Grazie ad Alessandro D’Andrea per avermi insegnato a pensare in profondità. Grazie,
perché hai voluto ascoltare quello che avevo da spiegare, e per aver sempre vagliato
criticamente ogni mia affermazione. Grazie per avermi posto domande a cui non
sapevo rispondere. Grazie per avermi posto domande a cui ho saputo rispondere
solo dopo averci pensato a lungo. Grazie perché in più di un’occasione, quando
giudicavo senza pensare, sei stato l’unico a farmi capire che stavo sbagliando. Grazie
perché, quando ne ho avuto bisogno, ho trovato sempre aperta la porta del tuo
ufficio. Grazie, perché ad un caffè non dici mai di no.
Grazie a tutti gli altri professori, ricercatori, postdoc e dottorandi che hanno assistito
ai miei seminari, facendo domande e proponendo soluzioni: il professor Manetti, il
professor Mondello, Donatella Iacono, Sofia Tirabassi, Giovanni Mongardi, Fabio
Felici. Grazie, perché vedere persone infinitamente più esperte e preparate di me
prendere appunti mentre io parlavo è stata una delle emozioni più belle, e mi ha
insegnato che, quando si studia la matematica, tutti possiamo imparare da tutti. Se
quei momenti sono stati di vera crescita, lo devo a voi.
Grazie a Stefano Pascolutti, per tutti i calcoli fatti insieme sulle scalette del diparti-
mento o sull’erba assolata del prato. Grazie perché provi sempre a capire, anche se
il problema esula dal tuo campo.
Grazie alla Professoressa Pinzari, perché ha condiviso il mio entusiasmo nel capire
ancora una volta che la matematica è una, e perché quando insegnerò e sentirò
brusio in aula, chiederò sempre ad alta voce che cosa ho sbagliato.
Anche se abbiamo avuto pochi contatti, grazie al professor Doplicher, per avermi
mostrato cos’è la vera eleganza.
Grazie ai miei meravigliosi colleghi. Grazie al nostro gruppo di lavoro semi-ufficiale
per le nottate trascorse a fare esercizi, che ora ricordo (quasi) con gioia, e perché è
sempre bello imparare da voi: grazie Andrea, perché quando sarò nella terra dello
swing penserò sempre a te, grazie Damiano e Serena, perché le cene tutti insieme,
a casa vostra, mi hanno fatta divertire così tanto che vorrò venire a vedere come
ve la cavate con la cucina inglese, grazie Emanuele, perché quando mi racconti
qualcosa mi fai sempre venir voglia di starti a sentire, grazie Carmelo, perché sono
sicura che sentirò battere il tuo grandissimo cuore anche al di là dell’oceano. Grazie
Domenico, perché i tuoi appunti perfetti mi hanno salvato la vita troppe volte
perché si possa contarle; grazie Camilla, perché un giorno vorrò accompagnare con
la mia musica i tuoi passi di danza. Grazie Giovanni, perché in fondo alla fine si
ride e si scherza. Grazie Riccardo, per le questioni di lana caprina. Grazie Giulio,
perché la tua fantasia mi fa vedere possibilità che da sola, forse, non riuscirei ad
immaginare. Grazie Damiano Ricceri, perché mi mostri che la matematica è più
bella se la si condivide; Ludovica, perché trovi sempre un modo per farmi stare
bene; Maria, perché anche se fai finta di essere cinica in realtà conosci la sensibilità;
Fabrizio, perché senza te e Francesca il prossimo Natale il Castelnuovo sarà un po’
più vuoto; Mauro, perché anche se abbiamo idee diverse ci piace tanto metterle a



87

confronto; Ivan, perché ogni volta che parlo con te mi regali un’idea nuova; e poi
Mina, Riccardo, Matteo, Arianna, Alessandro, Elisa, Mimma, Mikaela e, in fondo,
tutto il Castelnuovo.
Grazie alle due metà del mio cuore, le migliori amiche che si possano desiderare.
Grazie Manola, perché la leggerezza, la calma, e lo spirito con cui affronti i miei
problemi spesso mi hanno permesso di trovare la soluzione anche solo parlandotene.
Grazie perché mi conosci meglio di me stessa, e per le innumerevoli volte in cui
mi capisci senza che io abbia bisogno di parlare. Grazie perché quando chiamo, tu
rispondi sempre, e perché pensi a me anche quando avresti tutt’altro a cui pensare.
Grazie Benedetta, perché quando ho bisogno di te ci sei sempre. Grazie perché mi
prendi in giro, ma poi mi guardi per capire se ci sono rimasta male. Grazie perché
non mi giudichi mai, ma mi aiuti sempre a guardare l’altra faccia della medaglia.
Grazie perché, anche quando hai tanti problemi, vuoi sempre ascoltare prima i miei.
Grazie, perché quando meno me l’aspetto mi ritrovo un messaggio in cui scrivi che
mi vuoi bene. Grazie, perché mi insegni il vero significato della parola “maturità”.
Grazie a Giovanna, Elona e Maria, perché per cinque anni hanno scherzato insieme
a me tutte le sere, dopo giornate spesso faticose; per aver pianto e riso con me, e
per aver sopportato il mio disordine, la mia sbadataggine, e per avermi impedito più
di una volta di distruggere la mia stessa casa.
Grazie ai miei genitori, perché non hanno mai giudicato, ma hanno sempre capito e
aiutato e, soprattutto, perché hanno vissuto questi cinque anni con la stessa intensità
con cui li ho vissuti io. Grazie perché capirete che se anche questi ringraziamenti
sono così brevi, non lo sono perché ho poche cose da dire, ma perché quelle che ho
da dire sono così importanti che le parole fanno fatica ad esprimerle.
Ed infine, grazie alla Musica, perché per tutta la vita ha sorriso dentro di me, affinché
per tutta la vita continui a farlo.





Bibliografia

[1] Atiyah-MacDonald Introduction to commutative algebra Addison-Wesley
Publishing Company (1969)

[2] Tom Bridgeland Stability conditions on triangulated categories

[3] Tom Bridgeland Stability conditions on K3 surfaces

[4] Geométrie des surfaces K3: modules et périodes. Séminaires Palaiseau. ed A.
Beauville, J.-P. Bourguignon, M. Demazure. Astérisque 126 (1985).

[5] S. Beilinson, Bernstein , Deligne Faisceaux Perverses. Nagoya Math. J. 81 (1981).

[6] A. Bondal, D. Orlov Reconstruction of a variety from the derived category and
groups of autoequivalences Compositio Mathematica 125: 327-344, 2001.

[7] Robin Hartshorne Algebraic Geometry Springer, Graduate Texts in
Mathematics:52 (1977).

[8] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry. Claredon Press,
Oxford (2006).

[9] D. Huybrechts, M. Lehn, Geometry of the Moduli spaces of sheaves over. Nagoya
Math. J. 81 (1981).

[10] M. Kashiwara, P. Schapira Categories and sheaves Springer: A series of
Comprehensive Studies in Mathematics 332 (2006).

[11] Y. Kawatama, D-equivalence and K-equivalence MathAG 0205287

[12] S. MacLane Categories for the Working Mathematician Springer (1971)

[13] S. Mukai, Duality between D(X) and D(X̂) with its applications to Picard
sheaves. Nagoya Math. J. 81 (1981), 153-175.

[14] S. Mukai, On the moduli space of bundles on K3 surfaces, I. In: Vector Bundles
on algebraic varieties, Bombay (1984).

[15] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or
K3 surface. Invent. Math. 77 (1984), 101-116.

[16] S. Mukai, Abelian varieties and spin representations.

[17] S. Mukai, Vector Bundles on a K3 surface. Proc. Int. Cong. Math. Beijing
(2002), 495-502.

89



90 Bibliografia

[18] D. Mumford, Abelian Varieties. Oxford Univ. Press (1974).


	Introduction
	Triangulated and derived categories
	Triangulated categories
	Derived categories: a rough construction

	Stability on triangulated and abelian categories
	Stability functions on abelian categories
	t-structures on triangulated categories
	Stability conditions on triangulated categories
	The space of stability conditions
	The natural actions

	Fourier-Mukai transforms and derived equivalences
	Definition and first properties

	Stability conditions on K3 surfaces
	Foundational material
	Constructing stability conditions
	The covering map
	Wall-and-chamber

	Ringraziamenti

